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Abstract

Rendering of participating media is a well researched topic. Using Monte Carlo path tracing,
participating media can be rendered in a physically accurate way. However, depending on the
medium properties involved, the performance of this simple algorithm can degrade quickly.
Rendering clouds in particular is a hard problem, as light can scatter many times inside the
medium due to lack of absorption, leading to noisy images and slow convergence. We investi-
gated methods for using machine learning techniques to predict the contribution of high-order
scattering from ground truth data. We developed two models using neural networks, to predict
light transport in participating media. We have implemented software to generate the datasets
for learning and a renderer incorporating our models. We analyzed the performance and quality
of our models and discuss further improvements and avenues for future research.
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Zusammenfassung

Die Bildsynthese von voluminösen Materialien ist ein gut erforschtes Gebiet. Dank Monte
Carlo Pfadnachverfolgung können solche Materialien physikalisch korrekt berechnet werden.
Die Effizienz dieses einfachen Berechnungsverfahren nimmt aber je nach verwendeten Eigen-
schaften des voluminösen Materials schnell ab. Die Bildsynthese von Wolken zum Beispiel,
ist ein schwieriges Problem. Weil Licht in einer Wolke nur selten absorbiert und dadurch
viele Male gestreut wird, führt einfache Pfadnachverfolgung zu viel Rauschen und langsamer
Konvergenz. Wir haben verschiedene Methoden untersucht, welche maschinelles Lernen ver-
wenden um den Lichtanteil von höhergradiger Streuung auf Basis von Referenzdaten vor-
auszusagen. Wir entwickelten zwei Modelle, unter Verwendung von neuronalen Netzwerken,
um den Lichttransport in voluminösen Materialen vorauszusagen. Desweiteren entwickelten
wir Programme zur Erstellung grosser Mengen an Referenzdaten, um unsere Modelle anzuler-
nen, sowie zur Bildsythese unter Verwendung unserer Modelle. Wir analysierten die Leis-
tung und Genauigkeit unserer Modelle und diskutieren Verbesserungen und Möglichkeiten für
zukünftige Forschung.
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1
Introduction

In the 1970s, University of Utah hired Ivan Sutherland to teach a computer graphics class,
which attracted many students that later became major contributors to the field. Among them,
Edwin Catmull, who returned back to the university for graduate school. Although he always
dreamed of becoming an animator, as he loved animation movies from his early childhood, he
found great interest in the field of computer graphics. When he created his first 3D animated
short movie now known as “A Computer Animated Hand”, it became his vision to produce a
feature-length animation movie exclusively created with computer graphics. He fulfilled his
dream by co-founding Pixar Animation Studios in 1986 and releasing “Toy Story” in 1995, the
first feature-length computer animated movie ever.

It took an average of 4 hours to render a single frame using a technique known as rasterization,
which basically projects 3D objects onto the screen plane and computes lighting and shading ef-
fects pixel by pixel. In a recent experiment in 2011, Pixar re-rendered the movie on their current
rendering cluster with an average render time of around 2 minutes per frame. Applying Moore’s
law, doubling the compute power every 18 months, one would expect a speedup of roughly a
factor 1000. In practice, the speedup was only around a factor 100, but it still demonstrates
the incredible pace at which technology evolved over the past decade. Naturally, the additional
computation power is used to increase the visual quality of the rendered frames, rather than
reducing the render time, or as Jim Blinn stated: “As technology advances, the rendering time
remains constant”.

A major increase in visual quality was achieved by incorporating global illumination, the effect
of light scattering multiple times among surfaces in the scene. “Shrek 2”, produced by Dream-
Works Animation in 2004, was the first animation movie using an approximate solution for
global illumination, followed by “Up”, released by Pixar in 2009, and “Toy Story 3” in 2010.
In recent years, rendering technology for movie production has shifted towards path tracing,
an algorithm that renders images by tracing light paths from the camera, scattering at surfaces
in the scene and accumulating light when paths intersect with light sources. Path tracing is a

1



1. Introduction

very intuitive way of handling light transport, as it resembles how light moves in the physical
world, allowing for better modeling of physically based materials and light sources. In addition
to surfaces, path tracing can also be used for rendering skin, hair, fur and volumetric effects
such as smoke and clouds.

Rendering volumetric materials, also called participating media, is a challenging problem, as
light does not only scatter at the surface boundary of an object, but actually penetrates into the
object and scatters potentially many times before exiting. Similar to the early techniques for
rendering surfaces, where only a single scattering event was computed between the camera and
the light source, participating media have for a long time been rendered with single-scattering.
This is a crude approximation for many volumetric effects including clouds, where light can
scatter hundreds of times before leaving. To render such effects more realistically, rendering
algorithms need allow for light to scatter multiple times, also called multiple-scattering. With
todays computational power it is usually feasible to compute multiple-scattering up to a low
number of bounces, leaving out the high-order scattering contribution, but this can result in
a huge loss of energy if the medium is not absorbing light, which for example is the case in
clouds. “The Good Dinosaur”, recently released by Disney and Pixar, features realistic render-
ings of clouds computed with path tracing. It took an average of 48 hours to render a single
frame, while multiple-scattering effects for clouds have been accelerated by using some approx-
imations [Wre15]. This clearly illustrates that computational power is still not abundant enough
for rendering these kinds of volumetric effects in a physically correct way.

The appearance of clouds is typically rather diffuse and blurry, which is a consequence of
high-order scattering. This allows for many approximations to be made when rendering clouds,
however, these techniques usually result in a large bias compared to the ground truth. Artists can
counter these errors to some extent by tweaking medium properties and get back more realistic
results. Instead of using analytical approximations, our main idea is to learn how to predict the
high-order scattering contribution based on ground truth data.

Recent development in machine learning, most prominently deep learning techniques, have in-
spired many applications where complex tasks are successfully solved by learning from large
amounts of data, encouraging our endeavor. In this thesis, we have investigated different pos-
sibilities of learning high-order scattering from data. The result of our investigations is the
development of two prediction models based on neural networks. We have implemented soft-
ware to create large sets of ground truth data on a computer cluster to train our models and
implemented a custom renderer incorporating the models for predicting high-order scattering.
To test the quality and performance of our models, we have conducted various experiments and
comparisons and provide an analysis and discussion of the results.

We introduce the theoretical background that builds the foundation for this thesis in Chapter 2.
This includes the fundamentals of light transport in participating media, Monte Carlo integra-
tion, basic rendering algorithms and an introduction to machine learning with focus on nonlinear
regression using neural networks.

In Chapter 3 we review related work in the fields of rendering participating media as well as in
recent applications of machine learning in the field of computer graphics in general.

We investigate the effects of high-order scattering when rendering clouds in Chapter 4 and
discuss different ideas for predicting its contribution.

2



Chapter 5 introduces our first model, that uses neural networks to predict the global light trans-
port from an infinite directional light source to a single point and direction within a simple
convex bounded homogeneous medium. We discuss the model, details on the training of the
model as well as integrating the model into a renderer and provide analysis on the performance
and quality of the model.

We extend our first model into a more general point-to-point transport model in Chapter 6,
which predicts the transport between two points within a heterogeneous participating medium.
We again discuss the model, training and usage of the model inside a renderer and discuss the
inherent difficulties we faced during the development.

A conclusion of this thesis and a quick review of the contributions is provided in Chapter 7. We
also discuss various ideas for future work based on insights gathered during our experiments.
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2
Theoretical Background

In this chapter we review the theoretical background we use throughout the rest of this thesis.
First, we introduce the theory of light transport, with focus on participating media, which builds
the foundation for rendering. Then we introduce Monte Carlo integration, a numerical frame-
work for computing integrals of arbitrary dimensionality, which is one of the most commonly
used techniques to solve light transport integrals in rendering. Next, we review two of the most
commonly used rendering algorithms, namely path tracing and bidirectional path tracing. We
use these algorithms both for generating datasets for learning as well as for rendering images.
Finally, we review the machine learning techniques used for our models, with focus on non-
linear regression using neural networks.

2.1. Light Transport

Light transport is the theory that describes how light propagates through a 3D environment. In
this section, we review the terminology and mathematical foundation for light transport within
participating media. Refer to [Jar08] for a more thorough discussion.

2.1.1. Radiometry

Radiometry is the study of measuring electromagnetic radiation, which also includes visible
light. We will quickly review the radiometric quantities and units that are most relevant for
reasoning about light transport.

To quantify light, we can think of individual photons that carry quantums of energy. The total
amount of energy of a number of photons, denoted Q, is expressed in terms of joules [J ].
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2. Theoretical Background

Flux, or power, measures the total amount of energy passing through a surface per unit time.
Denoted Φ, flux is expressed in terms of watts [W = J · s−1] and defined as:

Φ =
dQ

dt
. (2.1)

As an example, we can quantify the total amount of light emitted from a light source by mea-
suring the flux across a hypothetical sphere enclosing the light source.

Solid angle, denoted by Ω, is the area on the unit sphere an object covers viewed from the
center vertex of the sphere and is expressed in steradians [sr]. Differential solid angle can be
expressed both in terms of an area element dA at distance r or in polar coordinates:

d~ω =
dA
r2

= sin θ dθ dφ. (2.2)

We use use ~ω to specify directions and assume they are unit length (‖~ω‖ = 1). Similarly, we
write ~ωxy to specify the normalized direction from x to y.

Radiant intensity measures the directional density of flux. It is denoted by I (units [W · sr−1]),
and can be expressed in terms of flux:

I(~ω) =
dΦ(~ω)

d~ω
. (2.3)

As an example, an isotropic point light source with total power Φ has uniform intensity I = Φ
4π

.

Radiance measures the flux density per unit solid angle, per unit projected area. We denote
radiance by L (units [W · sr−1 ·m−2]) and express in it terms of flux:

L(x, ~ω) =
d2Φ(x, ~ω)

d~ω dA⊥(x)
, (2.4)

where dA⊥(x) = dA(x) cos θ is projected area, with θ being the angle between the surface
normal and direction ~ω.

In order to distinguish between incoming and outgoing radiance, we use the following conven-
tion:

• L(x← ~ω) is used to specify incoming radiance to x from direction ~ω,

• L(x→ ~ω) is used to specify outgoing radiance from x into direction ~ω.

Radiance is arguably the most important quantity when computing light transport, as it remains
constant along straight lines when inside a vacuum, meaning that radiance leaving at point x
into direction of point y is equal to radiance arriving at point y from direction x.

Fluence measures the flux at a specific point. We denote fluence by Φ(x) (units [W ·m−2]) and
define it as an integral of radiance:
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2.1. Light Transport

Φ(x) =

∫
Ω4π

L(x← ~ω) d~ω, (2.5)

where Ω4π refers to integration over the sphere of directions.

2.1.2. Participating Media

While many computer graphics applications assume light to travel within the vacuum, we focus
on light traveling inside participating media. In rendering, it is common practice to model
participating media as collections of microscopic particles and to reason about the interactions
between light and particles using a probabilistic view. This assumes that interactions with the
medium are statistically independent of each other. In physics, it is known that there actually is
correlation between the scattering events in clouds, however, this theory has generally not yet
been adapted to computer graphics and is beyond the scope of this thesis.

2.1.3. Radiative Transfer Equation

As photons travel through a participating medium, they may interact with particles in the
medium. The probability of an interaction between a photon and a particle is related to the ex-
tinction coefficient σt (units [m−1]), which depends both on the density and size of the particles.
See Figure 2.1a for a visual comparison of the appearance of media with different extinction
coefficients. When a photon interacts with a particle, it is either absorbed or scattered into a
new direction, with relative probabilities given by the absorption coefficient σa and scattering
coefficient σs. The extinction coefficient is defined as σt = σa + σs and its inverse 1

σt
(units

[m]) is known as the mean free path distance. The ratio αs = σs
σt

between the scattering and ex-
tinction coefficient is known as the scattering albedo. See Figure 2.1b for a visual comparison
of the appearance of different scattering albedos.

The radiative transport equation describes the differential change of radiance L along a given
direction ~ω and is defined as:

(~ω · ∇)L(x→ ~ω) =−σa(x)L(x→ ~ω)︸ ︷︷ ︸
absorption

+σa(x)Le(x→ ~ω)︸ ︷︷ ︸
emission

−σs(x)L(x→ ~ω)︸ ︷︷ ︸
out-scattering

+σs(x)Li(x→ ~ω)︸ ︷︷ ︸
in-scattering

.

(2.6)

The in-scattered radiance Li is defined as an integral over solid angle:

7



2. Theoretical Background

Li(x→ ~ω) =

∫
Ω4π

p(x, ~ω′ ↔ ~ω)L(x← ~ω′) d~ω′, (2.7)

where p(x, ~ω′ ↔ ~ω) is the phase function and Ω4π refers to integration over the sphere of
directions.

We can simplify the radiative transfer equation by combining the absorption and out-scattering
terms into a single extinction term and removing the emission term, assuming that participating
media are generally not emitting light:

(~ω · ∇)L(x→ ~ω) = −σt(x)L(x→ ~ω)︸ ︷︷ ︸
extinction

+σs(x)Li(x→ ~ω)︸ ︷︷ ︸
in-scattering

. (2.8)

2.1.4. Phase Function

The phase function p(x, ~ω′ ↔ ~ω) describes the angular distribution of scattering and has units
[sr−1]. We use the convention of ~ω and ~ω′ both pointing away from the scattering location x.
The phase function for uniform or isotropic scattering is defined as:

piso(~ω
′ ↔ ~ω) =

1

4π
. (2.9)

A commonly used phase function in computer graphics is the Henyey Greenstein phase function
[HG41], which can model both forward and backward scattering:

phg(~ω
′ ↔ ~ω) =

1− g2

4π (1 + g2 + 2g cos θ)
3
2

, (2.10)

where cos θ = 〈~ω′, ~ω〉 and the parameter g ∈ (−1, 1), known as eccentricity, determines the
strength of forward or backward scattering. See Figure 2.1c for a visual comparison of the
appearance with different values of g.

When the size of particles in a participating media are comparable to the wavelength of visible
light, such as water particles in fog and clouds, the phase function can be numerically derived
using Lorenz-Mie theory [Lor90, Mie08]. In rendering, empirically derived approximations
for different types of media based on the Lorenz-Mie theory have been used. Among them,
Rayleigh scattering [Ray71], to model clear atmospheres:

pr(~ω
′ ↔ ~ω) =

3

16π
(1 + cos2 θ), (2.11)

as well as approximations to model hazy and murky atmospheres [NMN87]:

pmh(~ω
′ ↔ ~ω) =

1

4π

(
1

2
+

9

2

(
1 + cos θ

2

)8
)
, (2.12)
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2.1. Light Transport

(a) Extinction coefficient σt is increased from left to right.

(b) Scattering albedo αs is increased from left to right.

(c) Henyey Greenstein eccentricity value g is −0.9,−0.5, 0.0,+0.5,+0.9 from left to right.

Figure 2.1.: Renderings showing the visual appearance of the primary properties of participating media.
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Figure 2.2.: Angular plots of different phase functions: (a) and (b) show the Henyey Greenstein phase
function with g = 0.5 and g = 0.85, (c) shows the Rayleigh phase function, (d) shows the
hazy and (e) shows the murky phase function.

0
π
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π
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Figure 2.3.: Plots of the Lorenz-Mie phase function for a typical water cloud. In (a), we show the phase
function computed for the red, green and blue color channels. In (b), we show the chopped
model by removing the peak and show the Henyey Greenstein phase function with g = 0.85
used as an approximation.

pmm(~ω′ ↔ ~ω) =
1

4π

(
1

2
+

33

2

(
1 + cos θ

2

)32
)
. (2.13)

See Figure 2.2 for angular plots of the different phase functions. To render realistic clouds, we
would typically want to use the Lorenz-Mie theory to tabulate a phase function that corresponds
to the size and density of water droplets found in actual clouds. The resulting phase function
generally has a very strong forward peak, as shown in Figure 2.3a. Using the chopped model
[Bou08], the strong forward peak is replaced with a delta distribution, which is equal to adjust-
ing the extinction coefficient σt. The resulting chopped phase function can be approximated
with a Henyey Greenstein phase function with eccentricity g = 0.85, as shown in Figure 2.3b.

2.1.5. Volume Rendering Equation

The rendering equation [Kaj86] describes in integral form how to compute radiance arriving at a
camera in a scene built from surfaces and light sources. The volume rendering equation, extends
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2.2. Monte Carlo Integration

the rendering equation by handling participating media. We describe a simplified version based
on the assumption that the scene does not contain surfaces.

The loss of radiance due to extinction is given by the first term of the radiative transfer equation
(2.8). Integrating this term along a ray from x to x′, we get the transmittance, the fraction of
radiance remaining after traveling along the ray:

Tr(x↔ x′) = e−τ(x↔x′), (2.14)

where τ(x↔ x′), the optical depth, is defined as:

τ(x↔ x′) =

∫ x′

x

σt(x) ds(x). (2.15)

The volume rendering equation is the integral form of the radiative transfer equation (2.8) and
is given by:

L(x← ~ω) =Tr(x↔ xe)Le(xe → −~ω)︸ ︷︷ ︸
reduced radiance

+

∫ xe

x

Tr(x↔ xt)σs(xt)Li(xt → −~ω) ds(xt)︸ ︷︷ ︸
accumulated inscattered radiance

,
(2.16)

where Le is the radiance emitted by the environment, r(x, ~ω) is the ray function that returns the
nearest point starting at x along ~ω past all participating media and xe = r(x, ~ω).

2.2. Monte Carlo Integration

Monte Carlo integration is a numerical framework for approximating integrals by means of
random sampling. Despite being a relatively old technique, having its origin during the devel-
opment of the atomic bomb in 1949 [MU49], it is still the most commonly used method for
computing light transport today. This section provides an overview of the technique, includ-
ing more recent additions relevant for light transport computation such as multiple importance
sampling. Refer to Pharr et al. [PH10] and Veach [Vea97] for a more thorough discussion.

2.2.1. Random Variables

A random variable, denoted by X , is a variable whose value is the outcome of some random
process. Random variables can either be discrete or continuous, however, we focus on the
continuous kind. The cumulative distribution function, or CDF, of a random variable X , is the
probability that a randomly drawn value from the variable’s distribution is less or equal to some
threshold x:
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2. Theoretical Background

cdf(x) = Pr[X ≤ x]. (2.17)

The probability density function, or PDF, is the derivative of the CDF:

pdf(x) =
d

dx
cdf(x). (2.18)

Because CDFs are always monotonically increasing we can use:

Pr[a ≤ x ≤ b] =

∫ b

a

pdf(x) dx = cdf(b)− cdf(a). (2.19)

The expected value and variance of a random variable Y = f(X) over domain Ω(x) are defined
as:

E[Y ] =

∫
Ω(x)

f(x)pdf(x) dΩ(x), (2.20)

σ2[Y ] = E[(Y − E[Y ])2], (2.21)

where σ, the square root of variance, is the standard deviation.

2.2.2. Monte Carlo Estimator

The Monte Carlo estimator addresses the problem of numerically solving the integral:

F =

∫
Ω

f(x) dΩ(x), (2.22)

for an arbitrary function f : Rn 7→ Rm and integration domain Ω ⊂ Rn. F can be estimated by
taking N random samples from a distribution over Ω of a random variable X:

〈FN〉 =
1

N

N∑
i=1

f(Xi)

pdf(Xi)
. (2.23)
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It is easy to show that the expected value of 〈FN〉 is indeed equal to F:

E
[
〈FN〉

]
= E

[
1

N

N∑
i=1

f(Xi)

pdf(Xi)

]

=
1

N

N∑
i=1

E

[
f(Xi)

pdf(Xi)

]

=
1

N

N∑
i=1

∫
Ω

f(x)

pdf(x)
pdf(x) dx

=
1

N

N∑
i=1

∫
Ω

f(x) dx

=

∫
Ω

f(x) dx

= F.

The convergence rate of the estimator 〈FN〉 is given by:

σ[〈FN〉] =
1√
N
σ[Y ] ∝ 1√

N
, (2.25)

where Yi = f(Xi)/pdf(Xi). To half the error, we generally need four times the number of sam-
ples. However, by reducing the variance of Y , the total variance of the estimator can be reduced
significantly, as discussed in the next section. Many numerical quadrature rules offer better
convergence rates for low dimensional integrals, but they suffer from the curse of dimension-
ality, leading to exponentially reduced convergence rates with increasing dimensionality of the
integral. The convergence rate of Monte Carlo integration is independent of the dimensionality
of the integral, making it a very useful technique for computing light transport.

2.2.3. Importance Sampling

The variance of a Monte Carlo estimator (2.23) can be reduced significantly by choosing sam-
ples from a distribution pdf(x) that resembles the integrand f(x). This is generally referred to as
importance sampling. Intuitively speaking, importance sampling simply places more samples
in regions of the integrand where it has high importance, e.g. results in large values.

2.2.4. Multiple Importance Sampling

For a complex integrand f(x), multiple sampling techniques with distributions pdfi(x) may
exist, each one putting importance on a different region of the integrand. Because variance
is additive, averaging estimators using different sampling techniques does not result in overall
reduced variance. By using multiple importance sampling [VG95] we can combine samples in
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2. Theoretical Background

a way that provably reduces overall variance. The multiple importance sampling estimator has
the form:

〈F 〉MIS =
M∑
i=1

1

Ni

Ni∑
j=1

wi(Xi,j)
f(Xi,j)

pdfi(Xi,j)
, (2.26)

where M is the number of different sampling techniques with distributions pdfi, Ni is the num-
ber of samples taken for sampling technique i,Xi,j is the j-th sample of i-th sampling technique,
and wi(x) is a weighting function. Two of the most commonly used weighting functions are the
power heuristic and the balance heuristic. The power heuristic is defined as:

wi(x) =
[ni pdfi(x)]β∑
k [nkpdfk(x)]β

, (2.27)

where β is typically set to 2. The balance heuristic is obtained by setting β to 1.

2.2.5. Russian Roulette

Reducing variance by drawing more samples can become expensive when the cost of evaluat-
ing individual samples is high. With prior knowledge of the contribution of individual samples
f(x) ∝ q, Russian roulette can be used to cut down the number of evaluated samples by replac-
ing the integrand with:

f(x)RR =

{
c with probability q,
f(x)−qc

1−q otherwise,
(2.28)

where c is a constant value, usually set to 0. Russian roulette will generally not reduce variance,
but by omitting expensive evaluation on samples with low contribution, more time is spent
evaluating samples with high contribution, leading to better convergence overall.

2.2.6. Confidence Interval Estimation

Monte Carlo estimators are an efficient technique for computing complex integrals. The number
of samples N is often increased iteratively until acceptable convergence is reached. Based on
the central limit theorem and interval estimation [KK51], confidence interval estimation allows
for estimating the number of samples necessary to reach convergence up to a specified error.
We only provide a brief overview of the technique, see [Bou08] for the full derivation.

Let us restate the Monte Carlo estimator of an integral F =
∫

Ω
f(x) dΩ(x):

〈FN〉 =
1

N

N∑
i=1

f(Xi)

pdf(Xi)
. (2.29)
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The estimator is equal to the sample mean of Y:

〈Y 〉N =
1

N

N∑
i=1

Yi, (2.30)

with Yi = f(Xi)/pdf(Xi). The corresponding sample variance of Y is:

S2
N =

〈
Y 2
〉
N
− 〈Y 〉2N . (2.31)

Sample mean and variance can easily be computed iteratively while running the Monte Carlo es-
timator, but some care needs to be taken to avoid a problem known as catastrophic cancellation
[Wel62]. Confidence interval estimation allows to estimate the number of samples N necessary
for the sample mean 〈Y 〉N to converge to a value within the confidence interval [F − c, F + c]
with a probability of 1−α, called then confidence level. Because F is unknown, we can instead
define the confidence interval in relation to the sample mean using c = k 〈Y 〉N and estimate the
number of samples N with:

N ≥
(
ta/2SN
k 〈Y 〉N

)2

, (2.32)

where ta/2 is given by the relation N (ta/2) = 1 − a/2, with N being the CDF of the normal
distribution. The confidence interval can also be defined in relation to the sample variance
c = kSN , which results in:

N ≥
(
ta/2
k

)2

. (2.33)

2.3. Rendering Algorithms

In this section, we review two rendering algorithms, path tracing and bidirectional path tracing.
Both algorithms use Monte Carlo integration for solving light transport by sampling random
walks. To reason about the two algorithms, we use a simplified version of the path integral
framework [JM12], only considering light transport in participating media, without taking into
account surfaces and visibility. The pixel intensity I on the image plane can be written as an
integral over the domain Ω of light transport paths:

I =

∫
Ω

f(x) dV (x), (2.34)

with x = x0, . . . ,xk being a path of k ≥ 1 segments and k + 1 vertices, where xk is on the
light source, or emitter, x0 is on the camera, or sensor, and the remaining vertices are scattering
locations within participating media. The differential measure dV (x) corresponds to volume
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integration. The path contribution function f is defined as product of geometry throughput
G(x), scattering throughput p(x) and transmittance Tr(x):

f(x) = G(x)p(x)Tr(x), (2.35)

where

G(x) =
k−1∏
i=0

G(xi ↔ xi+1), p(x) =
k∏
i=0

p(xi), Tr(x) =
k−1∏
i=0

Tr(xi ↔ xi+1).

The geometry term for segment xy is defined as G(x ↔ y) = D(x→y)D(y→x)
‖x−y‖2 , where D(x →

y) = |~nx · ~ωxy|, if x is on a surface with normal ~nx, e.g. on the emitter or the sensor and
D(x → y) = 1 otherwise, and the same for D(y → x). The transmittance term Tr(x ↔ y) is
defined as in (2.14). The scattering function p(xi) is defined as:

p(xi) =


Le(x0 → ~ωx0x1) if i = 0,

We(xk ← ~ωxkxk−1
) if i = k,

pm(xi, ~ωxixi−1
↔ ~ωxixi+1

)σs(xi) otherwise,
(2.36)

where Le is the emission, We is the sensor importance, σs is the scattering coefficient and pm
is the phase function of the medium. Figure 2.4 shows an overview of the terms involved in a
single light path.

Figure 2.4.: Visualization of the terms involved in the transport along a light path x.

The path probability density pdf(x) is defined as the joint probability density of the individual
vertices, pdf(x) = pdf(x0, . . . ,xk). Ideally, using Monte Carlo integration, the joint probabil-
ity density pdf(x) should be proportional to the path contribution function f(x). In practice
however, depending on the rendering algorithm, different terms of the contribution function
cannot be importance sampled, leading to increased variance.
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2.3.1. Path Tracing

In path tracing, also called unidirectional path tracing, light paths are incrementally constructed
starting at the sensor. First, a vertex is sampled on the sensor with respect to sensor importance
We. Additional vertices are generated by first sampling a distance with respect to transmittance
Tr, followed by a new direction with respect to the phase function pm. The light path is termi-
nated, adding its contribution to the estimate of pixel intensity I , when it hits an emitter. This
means that all terms of the contribution function f other than the emission Le are importance
sampled. This can lead to large variance, as the probability of hitting an emitter can be small.

Light paths can also be constructed with the first vertex on then emitter, called light tracing, but
the problem remains the same, as the probability of hitting the sensor is small. Practical imple-
mentations of path tracing often employ a technique known as next event estimation, connecting
the incrementally constructed path to an emitter at each scattering location. This dramatically
reduces variance, as a full path is constructed at each vertex.

2.3.2. Bidirectional Path Tracing

In bidirectional path tracing, two light paths are constructed, one starting at the emitter, the
other starting at a sensor, such that both the emission Le and the sensor importance We are
importance sampled. Full light paths are constructed by deterministically connecting the end
vertices of two path prefixes, using s vertices of the emitter path and t vertices of the sensor path.
Because the geometry term between the two connecting vertices has a singularity, which is not
importance sampled, bidirectional path tracing suffers from infinite variance [Kal63]. This can
be alleviated by using multiple importance sampling (2.26) over the s + t − 1 techniques, in
which any full path can be connected, yielding finite and often quite low variance. Note that
path tracing with next event estimation corresponds to bidirectional path tracing where the light
path prefix always has s = 1 vertices.

2.3.3. Sampling free flight distance

An important problem in both rendering algorithms is importance sampling the transmittance
term Tr, also known as sampling the free flight distance. In homogeneous media, we can sample
from the probability density function pdf(t) = Tr(t)∫∞

0 Tr(t) d(t)
= σte

−σtt, obtained by normalizing
the transmittance function Tr. We can then compute the cumulative density function cdf(t) =∫ t

0
pdf(t) dt = 1− e−σtt and invert it, to sample distances as t = − ln(1−ξ)

σt
, where ξ is a uniform

random variable in the range [0, 1).

In heterogeneous media, one method to sample distances is based on ray-marching, computing
the distance t = ‖x− x′‖ along a ray where Tr(x↔ x′) = ξ. The probability density function
resulting from this process is pdf(t) = Tr(x ↔ x′)σt(x

′). Due to the step size used for ray-
marching being on the order of the density grid spacing, this method can be very slow on large
density grids. Also, due to computing the transmittance using a finite step size, the method is
generally biased.
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A more popular approach for sampling distances in heterogeneous media is known as Woodcock
tracking, with its origin in particle physics [Col68]. The basic idea is to compute the upper
bound of the extinction coefficient σ̄t in the heterogeneous medium and use it to sample a
distance in the same way as for a homogeneous medium, to obtain a potential scattering location
x. The scattering event is then accepted with a probability of p = σt(x)

σ̄t
. If rejected, a new

scattering location is sampled, repeating the same process but starting at the previous location
x. In contrast to ray-marching, Woodcock tracking is unbiased and potentially much faster,
as it is not tied to a minimum step size. The main disadvantage of Woodcock tracking is that
the probability density function for the sampled distances is not known, which is typically not
a problem in path tracing, but prevents the computation of MIS weights accounting for the
transmittance terms in bidirectional path tracing.

2.4. Machine Learning

Machine learning is the study of automatically learning programs from data instead of manually
constructing them. Over the last decade, machine learning has rapidly spread throughout many
different fields in computer science. In todays world, machine learning is ubiquitous in count-
less applications such as web search, recommender systems, stock trading, image recognition,
language translation and many others. The success of machine learning in recent years is due to
the ever growing availability of large datasets and computational power, combined with some
major breakthroughs in the design of learning algorithms. Machine learning can be classified
into three major categories:

• Supervised learning Based on inputs and corresponding outputs, or labels, the goal of
the learning algorithm is to find a general mapping from inputs to outputs.

• Unsupervised learning Based only on inputs, or unlabeled data, the learning algorithm
tries to find the general structure of the data to uncover hidden patterns.

• Reinforcement learning Based on interaction with a dynamic environment, the learning
algorithm tries to maximize some reward.

Furthermore, machine learning can be categorized into different types of outputs that a learned
system is desired to provide such as:

• Classification The input data is labeled with different classes. Using supervised learning,
the goal of the system is to assign one or more classes to unseen input.

• Regression Similar to classification, the goal is to map unseen input to continuous output
values.

• Clustering Using unsupervised learning, a set of inputs is divided into a number of clus-
ters.

The goal of this thesis is to predict light transport, thus we are mainly focused on regression
problems.
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2.4.1. Regression

In the typical regression problem, a possibly unknown true function f is approximated by a
function f̂ : X → R, where X ∈ RN is the input space. The quality of the approximation is
usually measured using some error function such as mean squared error:

mse(f̂) = E[(f̂ − f)2]. (2.37)

The function f̂ , called predictor or model, is obtained by running a learning algorithm on a
training set consisting of ntrain data points {(x1, f(x1)), (x2, f(x2)), . . . , (xntrain , f(xntrain))}.
The approximation error (2.37), or generalization error, can be estimated by evaluating the
error function on a different set of ntest data points, referred to as the test set:

mse(f̂) ≈ 1

ntest

ntest∑
i=1

[
f̂(xi)− f(xi)

]2

. (2.38)

Although MSE is a common choice to define the generalization error, many other error functions
can be used [WF05].

2.4.2. Linear Regression

The linear regression model assumes that the relationship between the input and output of f is
linear. The model can be written as:

f̂(xi) = xTi w, (2.39)

where w are the model parameters. To find the model parameters, one can apply the method of
least squares [LH95], which minimizes the squared error between the input and the output:

w = arg min
w

ntrain∑
i=1

(
xTi w − f(xi)

)2
. (2.40)

2.4.3. Nonlinear Regression

Some nonlinear models can be transformed to linear models, also called linearization. As an
example, we can transform a simple nonlinear model such as:

f̂(xi) = αex
T
i w (2.41)

into

ln(f̂(xi)) = ln(α) + xTi w, (2.42)
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(a) (b)

Figure 2.5.: Structure of a Multilayer Perceptron network: (a) shows a network with four layers where x
is the input and ŷ is the predicted output, (b) shows a single unit in the network, where the
outputs oi of the previous layer are weighted with wij , summed together and fed through
the activation function φ to generate the units output oj .

and use least squares to obtain the model parameters α and w. However, we have to consider
the fact that we no longer minimize the squared error in the original space, but in the linearized
space.

An improved technique for nonlinear regression is known by the kernel method [STC04], which
relies on a user defined kernel computing the inner product between two data points, allowing
to transform the original data points into a much higher dimensional space without inflating the
size of the data points.

2.4.4. Artificial Neural Networks

Artificial neural networks, inspired by the humans central nervous system, consist of a set of
nodes, also called neurons or units, connected together to form a network. With its origin in
the early 1940s [MP43], it took several decades until ANNs became a practical computational
model by development of an efficient learning algorithm known as backpropagation [Wer74],
[RHW88]. With the advent of deep learning in the late 2000s, ANNs gained in popularity as
they consistently outperformed well established machine learning techniques in many different
areas.

2.4.5. Multilayer Perceptron

The multilayer perceptron, or MLP, is a feed-forward artificial neural network and consists of
three or more layers. The first layer, or input layer, consists of a set of inputs to the network.
The last layer, or output layer, consists of a set of outputs from the network. The layers in-
between are called hidden layers. MLPs are fully connected networks, meaning that each unit
of a layer connects to all units of the next layer. See Figure 2.5a for an example of an MLP.

Three layer MLPs are proven to be universal function approximators [HSW89], meaning that
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Figure 2.6.: The extended network to compute error E from a training set with x1, . . . ,xn as inputs and
y1, . . . ,yn as target values.

any nonlinear function can be represented given enough units in the hidden layer. Depending
on the type of activation function in the units, MLPs can be used for both classification and
regression problems. We will focus on the latter and write the regression model using an MLP
as:

ŷ = f̂(x), (2.43)

where x is the input, ŷ is the output and f̂ is the network function. The number of units in the
input layer is equal to the dimensionality of x. Similarly, the number of units in the output layer
is equal to the dimensionality of ŷ. When evaluating the model f̂ , the input layer is directly fed
with the components of x and the components of ŷ are given by the outputs of the units in the
output layer after propagating the inputs through the network. The output of each unit in the
hidden and output layer is defined as:

oj = φ(sj) = φ

(
n∑
i=1

wijoi

)
, (2.44)

where φ is the activation function, sj is the input to the unit, n is the number of units on the
previous layer, wij is the weight between units i and j and oi are the outputs of the units of the
previous layer. Note that it is common practice to use an additional input of constant value 1, to
allow biasing the input to the activation function. See Figure 2.5b for a visualization of a single
unit in the network. For regression problems, a common activation function is the continuous
differentiable sigmoid function, defined as:

φ(z) =
1

1 + exp(−z)
, (2.45)

dφ

dz
(z) = φ(z)(1− φ(z)). (2.46)

In order to learn the weights in an MLP, we first have to define an error function, or objective
function, a typical choice being the mean squared error:
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E =
1

2

n∑
i=1

‖yi − ŷi‖2, (2.47)

where n is the size of the training set, ŷi = f̂(xi) are the predicted values, yi = f(xi) are the
target values and the factor 1

2
is used to simplify the derivative. To minimize the error E, we

first build an extended network as shown in Figure 2.6. Each training sample xi is fed into the
MLP and its predicted value ŷi is used to compute the error term 1

2
‖yi − ŷi‖2, which is then

summed up to the total errorE. This extended network can compute the total errorE for a given
training set. The weights of the MLP network are the only parameters that can be adjusted to
minimize the error. Because E is calculated by a composition of output functions at each unit,
it is a continuous differentiable function of the l weights w1, . . . , wl in the MLP network. The
error E can therefore be minimized using gradient descent based on the gradient of E:

∇E =

(
dE

dw1

, . . . ,
dE

dwl

)
. (2.48)

The weights are iteratively updated using the increments:

∆wi = −γ dE
dwi

∀i ∈ {1, . . . , l}, (2.49)

where γ is the learning rate. Efficiently learning the weights within the extended network can
be done with the backpropagation algorithm, which on a high level performs an iteration of the
following three steps:

1. Feed-forward The samples of the training set are fed through the network, the outputs
and local derivatives with respect to each sample are computed for all units within the
network.

2. Backpropagation The total error E is propagated back through the network to obtain the
partial derivatives for each weight.

3. Weight update The weights are updated based on a global learning rate γ.

Refer to [Roj96] for a more thorough discussion of the backpropagation algorithm. Due to
memory constraints, it is typically not feasible to do gradient descent using the complete training
set. An alternative is to compute the gradients based on single data points during gradient
descent, known as stochastic gradient descent. In practice, it is preferred to use mini-batches
to compute the gradients, which allows to take advantage of vectorization and often leads to
smoother convergence.

In order to increase the rate of convergence during training, it is common practice to normalize
the input and output values in the dataset [LBOM98]. This can be achieved by subtracting the
mean and dividing by the standard deviation in each column of the dataset. Furthermore, the
rate of convergence can strongly be affected by the initialization of the weight parameters in the
network. Glorot et al. [GB10] propose to use weights from a uniform distribution:
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W ∼ U

[
−

√
6√

n+ np
,

√
6√

n+ np

]
, (2.50)

where n is the size of the current layer and np is the size of the previous layer.
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3.1. Rendering of Participating Media

Rendering is a well explored and actively researched topic in computer graphics. In this section,
we will focus on techniques used for rendering images with scenes containing participating
media, proposed over the course of the past two decades. Most methods aim at solving the path
integral to compute pixel intensities (2.34) in efficient ways, which is challenging due to its
generally infinite dimensionality.

Pattanaik and Mudur [PM93] have used a Monte Carlo algorithm that uses random walks start-
ing from light sources to render participating media. Lafortune and Willems [LW96] extended
this algorithm to use bidirectional random walks, starting both from the camera and the light
sources, and used multiple importance sampling [VG95] to combine contributions of paths ob-
tained by connecting all valid path prefixes. Pauly et al. [PKK00] have extended the Metropolis
Light Transport algorithm [VG97] by incorporating support for participating media.

Great effort has been put into researching different algorithms for sampling free flight distances
inside participating media, a core component of all algorithms using Monte Carlo random
walks. While this is a trivial problem for homogeneous media, as one can simply draw samples
from an exponential distribution, the problem is much harder for heterogeneous media. Ini-
tially, ray-marching [PH89] and the inversion method have been used for sampling distances
proportional to transmittance. While this method provides a proper PDF with respect to dis-
tance, it is biased and rather inefficient due to the overhead of ray-marching. An alternative
for sampling distances with its origin in particle physics, known as Woodcock tracking [Col68],
has later been adapted for unbiased rendering of heterogeneous media [MBJ+06, RSK08]. The
efficiency of the method has been improved by using spatial subdivision [YIC+10, SKTM11] to
allow for taking larger steps in optically thin regions of the medium. Unfortunately, Woodcock
tracking can only be used to stochastically sample free flight distances but does not provide a
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PDF. The noisy estimates of transmittance based on Woodcock tracking have been improved
by applying the concept of control variates [NSJ14]. Georgiev et al. [GKH+13] have replaced
the independent sampling of the phase function and free flight distance with a joint sampling
scheme to improve variance.

An alternative to path tracing for solving light transport is a two stage algorithm known as pho-
ton mapping [Jen96]. During the first stage, random walks are started from the light sources
and photons are stored at scattering locations inside the scene. In the second stage, the photon
map is queried using density estimation kernels to evaluate incoming light at arbitrary loca-
tions in the scene. Despite adding bias, photon mapping has been widely adapted because of
its efficiency. Jensen and Christensen [JC98] have extended photon mapping with support for
participating media. The method has later been improved by using a better density estima-
tion scheme [JZJ08]. In a similar approach to photon mapping, radiance is cached at various
points within the medium while solving the light transport integral, in order to reuse expensive
computation [JDZJ08].

In more recent work, the point based photons have been replaced with higher dimensional
primitives such as photon beams [JNT+11]. Reusing much of the same framework as photon
mapping, so called many light methods have replaced the point based photons with virtual point
lights [WABG06] and photon beams with virtual ray lights [NNDJ12]. In most recent work, the
strengths of various estimators for light transport have been combined into a unified rendering
algorithm [KGH+].

In general it is not possible to find closed form solutions to light transport within participating
media, which is among the reasons for the prevalence of Monte Carlo algorithms. One exception
is light transport in an infinite homogeneous medium, where an analytical solution for multiple-
scattering can be derived [LK11]. In other work, approximate analytical solutions for single-
scattering within homogeneous media have been derived and applied in real-time rendering
[SRNN05, PSS11].

Monte Carlo based rendering algorithms can be highly inefficient when rendering media with
high scattering albedo, because light paths can scatter many times before hitting a light source
and contributing to pixel estimates. Similar problems occur when dealing with strongly anisotropic
phase functions. This gave rise to many biased rendering techniques that approximate light
transport within strongly scattering media. One important area is rendering of sub-surface
scattering effects, a model where light can penetrate through a surface and scatter within the
medium behind it, such as skin. Among the most important techniques for rendering sub-surface
scattering are diffusion based methods, originally brought to the graphics community by Stam
[Sta95]. Jensen et al. [JMLH01, JB02] applied the method to rendering. Later, diffusion was
incorporated into the photon mapping framework [DJ08] to allow for oblique and indirect il-
lumination effects. The accuracy of the diffusion approximation has been improved further
[dI11, D’E12], and various methods for improving accuracy of oblique illumination have been
proposed [d’E13, HCJ13b, FHK14]. The diffusion theory has also been applied to compute
light propagation in heterogeneous media defined on a grid [DKE14].

Given a radiance field with bounded directional frequencies, different sets of medium proper-
ties can result in the same solution of the RTE. This is known as similarity theory [WPW89a,
WPW89b]. In a simplified first-order form, similarity theory allows to approximate an anisotropic
medium with an isotropic medium with adjusted scattering parameters. This is commonly used
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to derive medium properties for rendering with diffusion based methods [FCJ07]. In more re-
cent work, similarity theory has been used in its high-order form, to reduce the scattering albedo
in order to accelerate rendering using Monte Carlo methods [ZRB14].

Light transport inside clouds is a difficult problem, as light scatters many times due to lack of
absorption. Real-time rendering of clouds can only be achieved with substantial approxima-
tions such as folding multiple-scattering effects into a model for direct evaluation [REK+04].
In other work, iterative methods have been used to propagate light along grids to account
for multiple-scattering [SKSU05, Fat09, ERDS14]. Bouthors [Bou08] has thoroughly ana-
lyzed light transport within clouds and developed real-time and interavtive rendering algo-
rithms [BNL06, BNM+08] based on data fitting of extensive Monte Carlo simulations per-
formed within a slab of cloud. Some of his findings have also been applied to offline rendering
[WKL13, Wre15], allowing to render complex clouds with multiple-scattering in full length
feature movies.

3.2. Machine Learning in Rendering

In this section, we review related work in applications of machine learning to rendering prob-
lems. This is a relatively new research topic with many avenues to explore. Artificial neu-
ral networks have gained much attention with the recent successes of deep learning [LBH15]
techniques, significantly reducing error rates of classification and regression problems in many
fields. Bengio et al. [BCV12] discuss how data representation affects the performance of ma-
chine learning algorithms and show that learning data representations using general priors can
be superior over manually designing them using domain specific knowledge.

Ren et al. [RWG+13] have used regression functions based on feed-forward neural networks for
real-time estimation of indirect illumination from features at surface points, such as position,
viewing angle and local lighting conditions. The regression functions have to be trained on a
per-scene basis, with extensive precomputation based on offline renderings of the scene from
many different viewpoints and lighting scenarios. In later work [RDL+15], they formulate light
transport by a product of a transport matrix and a lighting vector and applied regression using
neural networks to estimate the transport matrix based on a sparse set of input images.

Vorba et al. [VKŠ+14] have used machine learning on a per-scene basis to guide the sampling
of light paths in bidirectional path tracing. They use a parametric mixture model to encode a
spatially varying importance function for importance sampling local scattering directions, with
respect to global light transport.

Nalbach et al. [NAM+16] have used deep convolutional networks for real-time estimation of
screen-space shading effects, such as ambient occlusion, depth-of-field and subsurface scatter-
ing and others based on features from deferred shading buffers including position, depth, normal
and material properties.

Kalantari et al. [KBS15] proposed to use non-linear regression for estimating filter parameters
for denoising images from noisy Monte Carlo renderings.

In the field of particle fluid dynamics, regression forests have been used to estimate the accelera-
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tion of individual particles based on a large training set of simulations obtained from traditional
fluid solvers [LJS+15].
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(a) 1 bounce, 1x (b) 4 bounces, 2x (c) 16 bounces, 5x (d) Full transport, 10x

Figure 4.1.: A cloud rendered up to different number of bounces and the corresponding relative render
time using the same number of samples per pixel.

In this chapter, we introduce our idea of using machine learning to predict the high-order scatter-
ing contribution when rendering clouds. Figure 4.1 illustrates how high-order scattering affects
the visual appearance of a small cloud. For the medium properties we use a scattering albedo of
αs = 0.99, a forward scattering Henyey Greenstein phase function with g = 0.85 and a mean
free path of 10m, assuming a cloud with diameter of roughly 1km. We illuminate the cloud
with a single directional light source. The scene was rendered with our path tracer using single-
scattering, 4 bounces, 16 bounces and an unbounded number of bounces, capturing the full
light transport. This comparison clearly illustrates the amount of energy that is lost by omitting
high-order scattering and its importance to the overall plausibility of the rendered image.

We also compare the relative increase in render time using an equal number of samples per
pixel, showing an increase of a factor of 10 between rendering single-scattering and the full
light transport. At first sight, this might seem like a reasonable cost to pay for the increase
of visual quality, however, the numbers are misleading. First, at the same number of samples
per pixel, the images rendered with less bounces are better converged. Second, in scenes with
larger or denser clouds and cloudscapes, light can scatter many times more before contributing
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to the pixel value, leading to much more expensive random walks and a significant increase in
variance. For these reasons, it quickly becomes infeasible to render complex scenes with full
light transport in a reasonable amount of time.

(a) 1 bounce (b) 4 bounces (c) 16 bounces

Figure 4.2.: Visualization of the missing high-order scattering contribution when using a fixed number
of bounces.

Figure 4.2 shows the contribution of high-order scattering in isolation, obtained by subtract-
ing the rendered image of single-scattering, 4 and 16 bounces from the image rendered with
full light transport. This contribution is what we have to predict in order to obtain the full
light transport. We can observe, that the high-order scattering contribution is more diffuse and
contains less variation compared to low-order scattering [Bou08]. Therefore, errors in the high-
order scattering contribution should generally be less discernable than errors in the low-order
contribution, allowing for some tolerance in the accuracy of the prediction.

4.1. Prediction in Screen-Space

In the early stages of our investigations we discussed the idea of using a prediction scheme in
screen-space, where a number of feature buffers is used to predict the final output. Obviously,
it is impossible to predict any reasonable output from a single image rendered with only single-
scattering or a low number of bounces, as most areas of the image are dark and contain no usable
information. By rendering the cloud multiple times, with progressively thinner participating
media, we might obtain a number of feature buffers that contain more information and can
be used to predict the final output. Additional feature buffers may be created from rendering
auxiliary buffers such as transmittance of the participating media, again in a series of decreasing
medium density. A possible set of feature buffers is visualized in Figure 4.3.

Similar to the work on screen-space shading [NAM+16], one could use convolutional neural
networks to predict the final image from the feature buffers. We have not pursued the idea of
predicting high-order scattering in screen-space for the following reasons:

• Artifacts at the border of the image.

• Artifacts due to missing information in the feature buffers.

• Precondition on reasonably well converged feature buffers to do the prediction, prohibit-
ing the use of progressive rendering.
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• Cost of acquiring the training set.

Figure 4.3.: A possible set of feature buffers for a screen-space prediction algorithm. The top row shows
single-scattering, the bottom row shows transmittance, both in a series of decreasing density
of the participating medium.

Prediction in screen-space remains an interesting topic for future research and might be a good
fit for interactive or real-time applications.

4.2. Prediction in World-Space

Predicting high-order scattering in world-space implies to learn how much light arrives at a
given point in the scene. The quantity of light at each point and direction in the scene is en-
coded in the 5D radiance function L(x← ~ω), also known as the plenoptic function. Predicting
the radiance function is an inherently difficult problem, as it depends on the specific configu-
ration of the scene, including the spatial distribution of participating media and their medium
properties, as well as all the light sources. Therefore, depending on the complexity of the scene,
the function potentially depends on an infinite number of variables. Successfully predicting the
radiance function relies on the assumption that the features provided to the model are a good
enough representation of the scene. It follows naturally, that the complexity of the scene needs
to be constrained in order to reduce the feature space to a reasonable dimensionality. We inves-
tigated two models using different constraints, which we discuss in the following two chapters.
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In this section, we introduce our global transport model, a model to predict the total light
transport to a point within a constrained scene configuration. Our model can be used within
a standard unidirectional path tracer, using random walks to sample the low-order scattering
contribution, and replace sampling of longer random walks by a prediction from the model, to
compute the high-order scattering contribution.

5.1. Model

Figure 5.1.: Overview of our global transport model. We predict in-scattered radiance inside a homoge-
neous participating medium illuminated by a single directional light source.

We constrain the scene configuration for our global transport model by using a single directional
light source and a single homogeneous participating medium with a convex boundary, such as
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a sphere or an ellipsoid. We predict the total light transport from the directional light source
to a point within the medium. Instead of predicting incident radiance L(x ← ~ω), left hand
side of (2.16), we predict in-scattered radiance Li(x → ~ω), left hand side of (2.7). First,
the in-scattered radiance function is easier to learn, because it is generally smoother than the
incident radiance function within a strongly anisotropic medium. Second, directly predicting
the in-scattered radiance, removes 2 dimensions from the integral we have to evaluate during
rendering, reducing both the cost and the variance. See Figure 5.1 for an overview of the scene
configuration used in our global transport model.

The directional light source emits constant radiance LL = 1 in direction ~ωL = (0, 0,−1)T .
The homogeneous participating medium, with convex shape S, has extinction coefficient σS ,
scattering albedo αS and uses the Henyey Greenstein phase function with eccentricity gS . Let
S(x) be a binary function, that is 1 if the point x is inside to the convex shape S, and define the
medium properties as follows:

σt(x) =

{
σS, if S(x) = 1,

0, otherwise,
(5.1)

σs(x) =

{
αSσS, if S(x) = 1,

0, otherwise,
(5.2)

p(~ω ↔ ~ω′) = phg(~ω ↔ ~ω′, gS). (5.3)

The volume rendering equation (2.16) for this constrained scene configuration simplifies to the
following sum of reduced radiance and accumulated in-scattered radiance:

L(x← ~ω) =Tr(x↔ r(x, ~ω)) δ(1− 〈~ω,−~ωL〉)LL︸ ︷︷ ︸
reduced radiance

+

∫ xe

x

Tr(x↔ xt)σs(xt)Li(xt → −~ω) ds(xt)︸ ︷︷ ︸
accumulated in-scattered radiance

,
(5.4)

where δ is the dirac delta function, 1− 〈~ω,−~ωL〉 is zero only if ~ω is in opposite direction of ~ωL
and Li(xt → −~ω), the in-scattered radiance (2.7), is defined as previously:

Li(x→ ~ω) =

∫
Ω4π

p(~ω′ ↔ ~ω)L(x← ~ω′)d~ω′. (5.5)

Because the reduced radiance term in the volume rendering equation has an analytic solution,
we can efficiently estimate the in-scattered radiance integral using a simple Monte Carlo path
tracer. For this reason, generating large training sets of ground truth data is quite efficient, as
shown later.

With the definition of light transport in place, we continue to describe the parametrization of
the prediction model. First, we define a set of directions ~di for i = 1 . . . nD over the sphere,

34



5.1. Model

(a) nD = 4 (b) nD = 16 (c) nD = 64

Figure 5.2.: Sets of directions with different size based on subdividing a tetrahedron.

(a) Query direction features θ, φ (b) Transmittance features ti

Figure 5.3.: Visualization of the features used in the global transport model.

using a subdivided tetrahedron to obtain progressively refined sets as shown in Figure 5.2. We
align the set of directions with respect to the light source and fix ~d1 = −~ωL = (0, 0, 1)T .
Despite not being distributed perfectly uniform across the sphere, the tetrahedron subdivision
scheme allowed us to reuse the same directions for sets with different sizes nD ∈ {4, 16, 64}
during our experiments. We suggest to use a more uniform distribution once the optimal number
of directions is determined. With in-scattered radiance as the target function f , we define its
predictor f̂ as:

Li(xq → ~ωq) = f ≈ f̂(αS, gS, θ, φ, t1 . . . tnD), (5.6)

where xq is the query location, ~ωq is the query direction and the features for the predictor f̂ are
defined as follows:

• αS is the scattering albedo,

• gS is the phase function eccentricity,

• θ, φ are the spherical coordinates of the query direction ~ωq (see Figure 5.3a),

• ti = Tr(xq ↔ r(xq, ~di)) is the transmittance along a ray starting at the query location xq
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in direction of ~di (see Figure 5.3b).

Note that the transmittance features ti implicitly represent the shape of the medium S, its ex-
tinction coefficient σS , as well as the query location xq in relation to the shape. In consequence,
S, σS and xq are not used as explicit features.

5.2. Training

We decided to use nonlinear regression using an MLP network for learning our predictor (5.6).
Being universal function approximators, MLPs are a good fit for this kind of problem and have
been used successfully in other rendering applications [RWG+13]. We used the mean squared
error as our loss function. The dataset for learning consists of 5 million data points, split into
4 million data points for training and the remaining 1 million for testing. To train the MLP
network, we used TensorFlow [AAB+15], a Python framework by Google for machine learning
applications with focus on deep neural networks.
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Figure 5.4.: (a) shows a comparison of the normalized values of transmittance Tr, optical depth τ and
our inverse log-transformed optical depth τ̂ , with respect to distance t, in a medium with
σt = 50. (b) shows a violin plot, visualizing the actual distributions of the feature values in
the training set for data points with σt ≈ 50.

5.2.1. Feature Transformations

In order to improve convergence during training, we used the standard practice of normalizing
all feature values by subtracting the mean and dividing by the standard deviation. During early
attempts, the MLP completely failed to learn the predictor. Analyzing the dataset revealed,
that the transmittance features ti quickly tend to zero in media with high extinction coefficient,
leading to a heavy-tailed distribution within the training set. Therefore, we replaced the trans-
mittance features ti with optical depth features τi = τ(xq ↔ r(xq, ~di)), which measure the
same quantity in a different space. This improved the accuracy, but we found that the distribu-
tion of optical depth values in our training set was still strongly skewed. In the end, we settled
with inverse log-transformed optical depth features that improved accuracy considerably:
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τ̂i = log

(
1

1 + τi

)
. (5.7)

We used the inverse of 1 + τi because the resulting features τ̂i have stronger correlation with the
target function Li(xq → ~ωq), which additionally eases the learning problem. We visualize the
three variants of the transmittance features in Figure 5.4 and show their distribution within the
training set.

5.2.2. Target Function Transformations

Even with the improved feature vector, the MLP still failed to learn the predictor in strongly
forward scattering media. Further analysis showed, that the target function had significant
correlation with the phase function evaluated for single-scattering. Therefore, we decided to
normalize the target function by dividing by the single-scattering phase function:

Li(xq → ~ωq)

p(xq, ~ωq ↔ ~ωL)
= fn ≈ f̂n(αS, gS, θ, φ, τ̂1 . . . τ̂nD). (5.8)

We analyzed the distribution of the target function values and again found a heavy-tailed dis-
tribution, hindering the accuracy of the MLP network. We used a log-transform on the target
function to improve its distribution:

log

(
1 +

Li(xq → ~ωq)

p(xq, ~ωq ↔ ~ωL)

)
= fln ≈ f̂ln(αS, gS, θ, φ, τ̂1 . . . τ̂nD). (5.9)

In addition, we also used the same normalization scheme on the target function values as we
used for the feature values, subtracting the mean and dividing by the standard deviation. See
Figure 5.5 for a visualization of the marginal and joint distributions of the original target func-
tion values f , the normalized function values fn, the log-transformed normalized function val-
ues fln and both the θ and τ̂1 feature values. This illustrates how the transformations led to
better distributions with less heavy tails, improving the accuracy of our predictor.

5.2.3. Network Architecture

We initially tried many different variations of the size and number of hidden layers for the MLP
network. We found that more than 2 hidden layers did not improve the accuracy, but increased
both the training time and the time to evaluate the network at rendertime. On the other hand,
using only a single hidden layer would require it to be of large size to get reasonable accuracy.
Therefore, we settled for a configuration with two hidden layers, an input layer consisting of
the feature values and a single unit on the output layer corresponding to the target function.

For training the network, we used standard stochastic gradient descent with an empirically set
learning rate and a batch size of 1000 data points. Training over 10 epochs using a single work-
station based on an Intel Core i7-3930K CPU @3.2GHz took around 30 minutes. Due to the
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Figure 5.5.: Visualization of the marginal and joint distribution between various transformations of the
target function values and the values of the two features θ and τ̂1 found in the training set for
σt ≈ 50. Both axes represents the actual range of target and feature values in the training
set after transformations and normalization.

dataset being very large compared to the number of parameters in the network, we never ran
into the problem of over-fitting. Figure 5.6 shows the training convergence for three network
configurations with different number of units on the first and second hidden layer. Even though
the configuration with [200, 100] hidden units performed marginally better than the configura-
tion with [100, 50] hidden units, we used the latter due to the increased performance during
rendertime.

5.3. Data Generation

We have written a small custom unidirectional path tracer in C++11 to generate the datasets for
training. With optimizations possible due to the constrained scene configuration, we reached
around a 10x speedup compared to the more generic Mitsuba renderer [Jak10], which we have
used to validate the correctness of our results. The data generator is configured with the follow-
ing parameters:

• extinction coefficient range [σS,min, σS,max],
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Figure 5.6.: Training convergence with different number of units on the two hidden layers. Thick lines
represent the testing error, dotted lines the training error.

• scattering albedo range [αS,min, αS,max],

• phase function eccentricity range [gS,min, gS,max],

• set of convex shapes S (e.g. unit sphere, unit box),

• enable/disable random rotation and scaling,

• maximum relative error and confidence level.

Based on the configured settings, the data generator performs the following steps to generate
each data point:

1. Sample extinction coefficient σS uniformly from [σS,min, σS,max].

2. Sample scattering albedo αS uniformly from [αS,min, αS,max].

3. Sample phase function eccentricity gS uniformly from [gS,min, gS,max].

4. Sample a convex shape S uniformly from S.

5. Transform shape S by uniformly sampling a rotation/scaling matrix.

6. Sample query location xq uniformly within S and direction ~ωq uniformly on the sphere.

7. Compute in-scattered radiance Li(xq → ~ωq) using Monte Carlo path tracing to requested
accuracy by using confidence interval estimation to control the number of samples.

8. Compute feature vector [αS, gS, θ, φ, τ̂1 . . . τ̂nD ] and target value fln and store the data
point.

For our experiments, we typically used a constant scattering albedo of αS = 1, a maximum
relative error of 5% and a confidence level of 95%. We used the Euler compute cluster running
Xeon E5-2697 v2 nodes to generate our training sets. Table 5.1 gives an overview of the typical
time to compute a single data point on a single core. Even with σS = 100, a high enough
extinction coefficient to render relatively dense clouds, the compute time for 5 million data
points was consistently below 1 core year. This allowed for experimentation and running the
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σS = 10 σS = 25 σS = 50 σS = 100

gS = 0.0 0.15 0.79 3.19 13.66

gS = 0.85 0.12 0.44 1.71 6.39

Table 5.1.: Time in seconds to generate a single data point on a single thread of a Xeon E5-2697 v2,
using a unit sphere shape S, scattering albedo αS = 1, maximum relative error of 5% and
confidence level of 95%.

data generation process multiple times during the development of our model.

5.4. Rendering

Figure 5.7.: Visualization of path tracing and predicting high-order scattering using our model. The
first k− 1 bounces are computed using path tracing with next event estimation, in-scattered
radiance on the kth bounce is predicted using our global transport model.

We integrated our global transport model into a custom renderer written in C++11, allowing us
to evaluate its quality and performance. The renderer uses standard unidirectional path tracing,
computing direct lighting at each bounce by connecting to a random light source. Using the
model is straight forward, as we can simply switch to the prediction once a configured number
of k bounces has been computed using random walks, as shown in Figure 5.7.

We re-implemented the evaluation of the MLP network in our renderer based on Eigen [GJ+10],
using the weights learned during training, such that the renderer can be run standalone. For
each directional light source in the scene, we construct a local coordinate system. This is used
to both transform the query direction into the space used for the model, as well as transform the
directions along which optical depth is evaluated into world space. The optical depth along the
set of directions ~di is evaluated using ray-marching. To get the in-scattered radiance at the query
location, we multiply the predicted value by the actual radiance emitted by the light source.

We found that the high-order scattering contribution from the prediction has generally much
lower variance than the low-order scattering contribution computed by sampling random walks.
For this reason, we use Russian roulette to cut down the number of predictions. We used an
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empirically determined probability of p = 0.25 for evaluating the prediction. The probability p
could also be determined by computing a low number of samples at the start of the rendering
process to estimate the ratio between variance of high-order scattering and low-order scattering.

5.5. Evaluation

To evaluate the quality and performance of our model, we used a set of 3 test scenes, furthermore
denoted by A, B, and C. Each scene contains a single cloud defined by a density grid. We
generated the clouds using a custom modeler software based on OpenVDB [MLJ+13]. The
density grids are generated from simple hierarchies of spherical primitives, adding detail using
displacement and advection based on noise functions. The scenes are chosen such that they
should progressively reveal the limitations of the model, assuming a homogeneous medium
bounded by a convex shape.

For scene A, we used a cloud shape that has an approximately convex boundary, a homogeneous
interior and only spatially varying density around the surface. In scene B, we used a cloud shape
that is more concave, but still has a homogeneous interior. The last scene C, uses a cloud that
has a more complex shape and a heterogeneous interior created by multiplying the density grid
with a 3D noise function. All scenes are lit by a single directional light source. While keeping
the direction of the light source fixed, we positioned three cameras to capture different lighting
scenarios, furthermore denoted by:

• Toplit, camera direction is perpendicular to the light direction,

• Backlit, camera direction is opposite to the light direction,

• Frontlit, camera direction is in line with the light direction.

For the medium properties, we used scattering albedo αs = 1, phase function eccentricity g =
0.85 and three different density scale values ρ. For scene A and B, we chose ρ ∈ {20, 40, 80},
roughly corresponding to mean free path distances of 50m, 25m and 12.5m, assuming the
diameter of the cloud to be around 1km. In scene C, we chose ρ ∈ {80, 160, 320}, because due
to the heterogeneous interior, the cloud is generally less dense.

Using 3 scenes, 3 lighting scenarios and 3 density scales lead to a total of 27 configurations.
We used cluster nodes based on Xeon E5-2680 v3 with 24 threads to render each image. We
rendered the following images in a resolution of 512× 512 for k ∈ {1, 2, 4, 8}:

• Low-order scattering reference, computed by path tracing, stopping after k bounces,
using 2048 samples per pixel,

• Full transport reference, computed by path tracing, using 4096 samples per pixel,

• Full transport using prediction, computed with path tracing and our prediction model
evaluated at the kth bounce, using 2048 samples per pixel.

Note that we used Russian roulette to terminate random walks during path tracing, using a
probability equal to the path throughput. Furthermore, we also use Russian roulette with a fixed
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probability of p = 0.25, to reduce the number of predictions, which leads to an average of
around 500 predictions per pixel.

We compute the bias of our model as the mean of absolute error between the pixel values of the
reference and prediction images in linear space. Because the low-order scattering contribution
is the same in both images, the computed bias represents the actual error of our prediction.
To avoid residual variance corrupting the bias estimate, we use a box filter on the images and
downscale them by a factor of 16. In addition, we only consider pixels that contain information,
e.g. have a value larger than zero, to avoid lowering the bias artificially.

To compare the render time, we estimate the time to unit variance, furthermore denoted as
TTUV, computed as the mean of the pixel variance multiplied by the render time. Again, we
exclude pixels that contain no information, as they do not contribute to the render time. We
compute the speedup of our method by dividing the TTUV of the reference by the TTUV of
the prediction. Note that the speedup is with regards to variance only and does not take into
account the bias of our method.

Reference k = 1 k = 2 k = 4 k = 8

Toplit

ρ = 20 390.0 42.3 9.2× 58.5 6.7× 87.4 4.5× 117.4 3.3×
ρ = 40 842.8 51.2 16.5× 66.7 12.6× 94.8 8.9× 132.4 6.4×
ρ = 80 1716.9 67.6 25.4× 83.2 20.6× 113.8 15.1× 162.0 10.6×
Backlit

ρ = 20 513.4 85.1 6.0× 129.2 4.0× 178.6 2.9× 214.7 2.4×
ρ = 40 628.7 44.7 14.1× 64.6 9.7× 92.7 6.8× 116.7 5.4×
ρ = 80 722.8 28.2 25.7× 34.9 20.7× 47.6 15.2× 63.2 11.4×
Frontlit

ρ = 20 381.7 38.9 9.8× 47.0 8.1× 64.1 6.0× 94.2 4.1×
ρ = 40 1189.7 85.4 13.9× 100.8 11.8× 129.9 9.2× 174.8 6.8×
ρ = 80 3049.2 165.2 18.5× 191.1 16.0× 239.3 12.7× 317.0 9.6×

Table 5.2.: TTUV in seconds and corresponding speedup for scene A under different lighting scenarios.

We report the TTUV and speedup for scene A in Table 5.2 and show a comparison of both the
bias and speedup in Figure 5.8. We visually compare our method against the reference for the
same scene, limited to the toplit configuration, in Figure 5.9. We show three groups of images,
corresponding to the 3 different density scales. In each group, the top row shows the full light
transport rendered using our method, evaluating the prediction at the kth bounce, as well as the
reference. The bottom row is split into 4 sub-images:

• Top-left, shows the low-ordering scattering contribution,

• Top-right, shows the reference high-order scattering contribution,
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Figure 5.8.: Comparison of bias (top row) and speedup with respect to TTUV (bottom row) for scene A
under different lighting scenarios.

• Bottom-right, shows the predicted high-order scattering contribution,

• Bottom-left, shows the error of the predicted high-order scattering contribution.

All images are tone-mapped using gamma correction. The error images show the absolute error
of the high-order scattering contribution images using gamma correction, hence they do not
exactly represent the bias, which is measured in linear space, but instead visualize the perceptual
error of our method. We provide the full evaluation of all 27 configurations in Appendix B.

The evaluation reveals, that the bias introduced by our method consistently decreases with
higher values of k, the number of bounces at which the prediction is made, as well as with
lower values of ρ, the density scaling factor. This is explained by the fact that both parameters
affect the total euclidean length of the paths up to the kth bounce, which in turn has an influ-
ence on the extents of the region inside the cloud, in which predictions for high-order scattering
are made. Using a larger region generally increases the quality of the high-order scattering
prediction, which can also be observed in the visual comparison. Both, increasing the num-
ber of bounces k and decreasing the density scaling factor ρ, lead to more diffuse and blurred
appearance of the high-order scattering contribution, converging towards the reference.

The speedup achieved by our method is generally proportional to the resulting bias, leading to
a trade-off between computational efficiency and the quality of the prediction. Using higher
number of bounces k reduces the speedup for two reasons: First, computing the low-order
scattering contribution becomes more expensive and its variance increases. Second, while the
cost for predicting the high-order scattering contribution remains roughly the same, its variance
increases due to the larger region over which predictions are made. Using the prediction in
thicker media generally leads to a higher speedup, a consequence of the strongly increased
TTUV for the reference whereas the TTUV for the prediction only increases marginally, as
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(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure 5.9.: Visual comparison between our method and the reference for scene A in the toplit configu-
ration.
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shown in Table 5.2.

For scene A, the errors are distributed quite evenly across the the image, which is a result of
using a mostly convex shape, matching the constraints of our model. In scene B, the errors
are clearly increased in regions where the cloud has a strongly concave shape, because the
model fails to accurately predict light transport in these regions. The results for scene C are
surprisingly good, given that the cloud has a heterogeneous interior, which the model is not
designed to handle. However, it appears that the overall density of the cloud is lower than in
scene A and B, hiding some of the artifacts.

5.6. Limitations

Due to the constrained scene configuration in our model, its applicability is naturally restricted
to scenes with a similar configuration. The current model predicts illumination from a direc-
tional light source, preventing its use in scenes with different types of light sources. Support for
environment maps would be a useful addition, allowing to render clouds under skylight illumi-
nation. With the current model, illumination from an environment map could be approximated
by sampling directions from an environment map, using the emitted radiance of the sampled
direction as the radiance for the directional light source. Supporting other types of light sources
might be feasible by extending the model with additional features.

Another limitation comes from the model being agnostic to visibility, preventing it to predict
shadowing from geometry as well as other participating media. Therefore, it is not possible
to render more complex scenes, for example a cloud scape instead of a single cloud. Using
a model based on a homogeneous medium with a convex boundary naturally limits its use to
predict high-order scattering in more complex scenes with heterogeneous media. This lead to
the development of our second model, introduced in the next chapter.
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6
Point-To-Point Transport Model

In this chapter, we introduce our point-to-point transport model, a model to predict light trans-
port between two points within a heterogeneous participating medium. In contrast to the global
transport model, this model can be used in a bidirectional path tracer, to connect the end vertices
of two subpaths and predict the total transport across the connecting segment. The main advan-
tage of this extended model is, that the constraints of the scene configuration are loosened, such
that the model should be applicable in many more scenarios, for example handling different
types of light sources, as well as heterogeneous participating media with arbitrary shapes.

6.1. Model

Figure 6.1.: Overview of the our point-to-point transport model. We predict the total light transport
between an emitter and a sensor inside a heterogeneous participating medium.
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For the point-to-point transport model, we assume a scene that contains a heterogeneous medium
with spatially varying extinction coefficient σt, constant scattering albedo αs and a Henyey
Greenstein phase function with constant eccentricity g. We place a point emitter with unit
power at position xe inside the medium, using a directional emission profile equal to the phase
function, with fixed incident direction ~ωe. Analogously, we place a point sensor at position xs
inside the medium, using a directional importance profile again equal to the phase function, but
with fixed exitance direction ~ωs. See Figure 6.1 for an overview of the scene configuration.

We define the total light transport T between the emitter and the sensor as an integral over the
domain Ω of light transport paths:

T (xe, ~ωe ↔ xs, ~ωs) =

∫
Ω

f(x) dV (x), (6.1)

where x = x0, . . . ,xk is a path of k ≥ 1 segments with fixed start and end vertices x0 ≡ xe
and xk ≡ xs, f is the contribution function as defined in (2.35) and the differential measure
dV (x) corresponds to volume integration. We use an adapted scattering function p(xi) for the
contribution function f , defined as:

p(xi) =


phg(~ωe ↔ ~ωx0x1) if i = 0,

phg(~ωs ↔ ~ωxkxk−1
) if i = k,

phg(~ωxixi−1
↔ ~ωxixi+1

)σs(xi) otherwise,
(6.2)

where phg is the Henyey Greenstein phase function with constant eccentricity g and σs is the
spatially varying scattering coefficient. Using the total light transport T as the target function
ft, we define its predictor f̂t as:

T (xe, ~ωe ↔ xs, ~ωs) = ft ≈ f̂t (xe, ~ωe,xs, ~ωs,Σ) , (6.3)

where Σ is a discretization of the density field σt(x).

6.1.1. Density Field Discretization

Because light transport is strongly affected by the density field, a representative discretization
Σ is essential for the accuracy of the predictor. In Figure 6.2, we visualize the fluence due to
light transport between two points inside an infinite homogeneous medium, computed using
a custom 2D light transport simulator. The resulting images can be interpreted as importance
maps for the discretization of the density field. We found that the regions around the emitter
and sensor positions are of higher importance than regions farther away, which comes at no
surprise, as all contributing light paths start at the emitter and end at the sensor.

We initially planned to use a similar approach as proposed in a method for predicting fluid dy-
namics [LJS+15], where a summed volume table is used to quickly evaluate features based on
the average response of a scalar field over many randomly positioned and sized boxes. How-
ever, due to the arbitrary orientation of the emitter and sensor with respect to the density grid,
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(a) g = 0 (b) g = 0.8 (c) g = 0.8 (d) g = 0.8

Figure 6.2.: Visualization of fluence due to light transport between two points at unit distance in an
infinite homogeneous medium with extinction coefficient σt = 40 and scattering albedo
αs = 0.99. (a) uses an isotropic medium, (b), (c) and (d) use an anistropic medium with
g = 0.8 and three different sets of emitter and sensor directions. The isolines represent
boundaries of regions with multiples of 10% of the total fluence.

we would have to recompute a new summed volume table for each prediction, which com-
pletely defeats its purpose. We propose to use point-based lookups into filtered versions of the
density field instead, which allows for arbitrary orientation of the emitter and sensor, as well as
measuring the average response over larger regions.

Because generating ground truth data for the point-to-point model is prohibitively expensive,
as shown later, we simplified our model by only supporting isotropic media. We define the
density field discretization Σ in a local coordinate system, with operator F being a combination
of translation, rotation and uniform scaling, transforming from world to local space.

We fix 6 degrees of freedom of F using fixed positions of the emitter and sensor in local space,
F (xe) = ẋe ≡ (0, 0,−1

2
)T and F (xs) = ẋs ≡ (0, 0, 1

2
)T . The remaining degree of freedom, the

rotation around the axis through the emitter and sensor, is fixed using a random rotation. We
define the density field in the local coordinate system as σ̇t(ẋ) = ‖xe − xs‖σt(F−1(ẋ)), where
‖xe − xs‖ scales the densities in relation to the transformation, in order to preserve the light
transport between the emitter and the sensor.

Next, we define a uniform grid of positions bn,li,j,k = 2l
(
bni , b

n
j , b

n
k

)T with bni = 2i
n−1
−1 and bnj , b

n
k

likewise, where n is the number of points along each axis, l is the level specifying the extents
of the grid [−2l, 2l]3 and i, j, k ∈ {0, . . . , n − 1} are the grid point indices. We define a single
level of density features as:

Σn,l
o =

{
σ̇t
n,l(o + bn,li,j,k) | ∀i, j, k ∈ {0, . . . , n− 1}

}
, (6.4)

where o is the origin of the grid and σ̇tn,l is a gaussian filtered version of the density field σ̇t
with standard deviation σ = 2l

n−1
, equal to half the grid point spacing along the principal axes

as shown in Figure 6.3a. We define three categories of density features:

Σn,l
e ≡ Σn,−l−1

ẋe
, Σn,l

s ≡ Σn,−l−1
ẋs

, Σn,l
g ≡ Σn,l

0 , (6.5)

where Σn,l
e and Σn,l

s cover the local neighborhood around the emitter and sensor and Σn,l
g covers
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(a) (b)

Figure 6.3.: In (a), we visualize three levels of density features. The dotted circles represent the gaussian
filter standard deviation σ. In (b), we show a visualization of the total set of density features
using three levels for local emitter and sensor (red and green) and global (blue) features.

the global neighborhood centered around the origin 0 = (0, 0, 0)T . The total set of density
features is given by the union of multiple levels in each category:

Σ
nl,ng ,ll,lg
t = ∪

{
Σnl,0
e , . . . ,Σnl,ll−1

e ,Σnl,0
s , . . . ,Σnl,ll−1

s ,Σng ,0
g , . . . ,Σng ,lg−1

g

}
, (6.6)

where the number of grid points nl, ng and the number of levels ll, lg are model parameters and
determine the quality and scale of the discretization. See Figure 6.3b for a visualization of the
total set of density features.

For our experiments, we used a density discretization with nl = 3, ng = 3 grid points, ll = 4 lo-
cal levels and lg = 5 global levels, resulting in a total number of 351 scalar density features. As
an additional feature, we provided an estimate of light transport within an infinite homogeneous
medium based on the improved diffusion equations [dI11].

We can rewrite the predictor for the model reduced to isotropic media as:

T (xe ↔ xs) = fi ≈ f̂i
(
Σ3,3,4,5
t , φD

)
, (6.7)

where Σ3,3,4,5
t is the density field discretization and φD is the light transport estimate based on

the diffusion equation.

6.2. Training

We initially tried to use MLPs for learning our predictor (6.3), but found that we had to use
large networks with millions of parameters in order to get acceptable accuracy. In consequence,
the time to train a network quickly grew to days, using a single workstation based on an Intel
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Core i7-3930K CPU @3.2GHz. Because TensorFlow supports training on both the CPU and
GPU, we decided to run the training on a Nvidia Geforce GTX 1080 Ti GPU, which resulted in
an average speedup of around 10×, reducing training times back to hours instead of days.

6.2.1. Deep Network

Figure 6.4.: Visualization of our deep residual network architecture using multiple blocks of fully con-
nected layers with rectified linear units. Each level of density features is fed into a separate
block, starting with the smallest scale of the local neighborhood and ending with the largest
scale of the global neighborhood.

As an alternative to the MLP network, we designed a deep network based on intuition of how
the density field affects light transport. Instead of using all density features as inputs on the first
layer, we feed the density features level by level into a deeper network as shown in Figure 6.4.

The network architecture uses an arrangement of blocks, each comprised of fully connected
layers using rectified linear units with activation function φ(x) = max(0, x). We found that 3
layers, each using 200 units, worked well for our purposes. Each level of density features is
fed into a separate block. We begin with the local density features Σe and Σs, starting with the
highest level, the one covering the smallest region around the emitter and sensor. The output
layer of each block, together with the density features of the next level act as the inputs of
the next block. We repeat the same pattern for the global density features Σg, starting with
the lowest level, again the one covering the smallest region around the emitter and sensor. We
feed the additional feature based on diffusion as an input to the last block in the network. The
network is terminated with a fully connected output layer.
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The intuition for our deep network is based on the observation that light transport is mostly
affected by the density field in the close neighborhood of the emitter and sensor, hence we
start with the density features representing these regions first. We propagate learned quanti-
ties related to the total light transport through a series of blocks, which take into account a
progressively larger neighborhood of the density field.

Based on the assumption of each block learning how the density field at the respective level
affects light transport, we used a technique known as deep residual networks [HZRS15] to im-
prove the accuracy and convergence of our network architecture. We create direct connections
from the output of each block to the output of its successor block, which results in each block
learning a residual based on the density features at the respective level.

6.2.2. Convergence

To evaluate the performance of our architecture, we trained two sets of models, furthermore
denoted as single and multi. For the first set, we used a dataset using ground truth data computed
on a single density grid, cloud-1196 of the cloud set in Appendix A, consisting of 2.5 million
data points. For the second set, we used a dataset based on ground truth data computed on
multiple density grids, all 12 clouds in Appendix A, consisting of a total of 30 million data
points. We used 75% of the dataset for training and the remaining 25% for testing.

We compared three different network architectures:

1. DNN, our deep residual network with 1.6 million parameters,

2. MLP1, 3 hidden layers with [2000, 1000, 500] units and 3.2 million parameters,

3. MLP2, 4 hidden layers with [4000, 2000, 1000, 500] units and 12 million parameters.

Note that the two MLP architectures use 2× and 7.5× more parameters than our deep network
architecture. We used the mean squared error loss function for all three architectures. For the
first set of models we used a batch size of 500 data points and trained for 200 epochs, whereas
for the second set we used a batch size of 2500 data points and 80 epochs. We used stochastic
gradient descent with a momentum of 0.9 and an empirically set schedule for the learning rate.
We show the results in Figure 6.5.

The convergence plots show that our network architecture is clearly superior to the MLP net-
work, while using fewer parameters. Both the error and the rate of convergence is improved
significantly. We found that training with the multi training set is much more demanding and
using more than 80 epochs may be worthwhile.

6.3. Data Generation

We have written a custom bidirectional path tracer in C++11 to generate the datasets for training,
solving the light transport integral (6.1). The data generator is configured with the following
parameters:
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(a) Convergence using the single training set.
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Figure 6.5.: Comparison of the training convergence of our deep network architecture (DNN) with two
MLP networks. Thick lines represent the testing error, dotted lines the training error.

• cloud density field σt(x),

• density scaling factor ρ,

• scattering albedo αs,

• phase function eccentricity g,

• number of query bounces k,

• maximum relative error and confidence level.

Based on the configured settings, the data generator performs the following steps to generate
each data point:

1. Sample a light path x with k segments from a random position and direction outside the
medium and set the emitter position xe = xk and emitter direction ~ωe = ~ωxkxk−1

.

2. Sample a light path x with k segments from a random position and direction outside the
medium and set the sensor position xs = xk and sensor direction ~ωs = ~ωxkxk−1

.
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6. Point-To-Point Transport Model

3. Compute light transport T (xe, ~ωe ↔ xs, ~ωs) using bidirectional path tracing to requested
accuracy by using confidence interval estimation to control the number of samples.

4. Compute feature vector [Σ
nl,ng ,ll,lg
t , φD] and target value ft and store the data point.

6.3.1. Optimizations

We have implemented various optimizations to accelerate the computation of the light transport
integral. First, instead of using ray-marching to sample free flight distances, we used Wood-
cock tracking, which proved to be much more efficient, even without the transmittance terms
represented in the MIS weights. Second, we used Russian roulette to discard many of the con-
nections between the subpaths. We tried two Russian roulette schemes: RR1 uses the product of
the phase function terms evaluated at the connected vertices, RR2 extends RR1 by multiplying
with the geometry term between the connected vertices.

We conducted a performance evaluation on the cluster, computing data points for different
medium properties and comparing various strategies to compute the light transport. We used
a maximum relative error of 10% and a confidence level of 95%. The results are reported in
Table 6.1.

Using Woodcock tracking instead of ray-marching results in a speedup between 5 − 15×. Us-
ing Russian roulette to prune path connections results in another 2× speedup, where the RR2
scheme performed marginally better overall.

Even with these optimizations, generating large amounts of ground truth data was prohibitively
expensive. In order to compute a dataset for our experiments, we decided to use relatively thin
media with a density scaling factor of ρ = 25.0 and use an isotropic phase function. The latter
allowed to reuse each computed data point multiple times in the final dataset, as we can evaluate
the density features for different rotations around the axis between the emitter and sensor points.
We computed 50000 data point for each of the 12 cloud density grids shown in Appendix A.
Each data point was reused 50 times, using random rotations, resulting in a total of 2.5 million
data points per cloud.

6.4. Rendering

We integrated the point-to-point transport model into our custom renderer, allowing us to eval-
uate its quality and performance. The renderer uses standard bidirectional path tracing for the
low-order contribution and uses our model to predict the transport between the end vertices
of both the emitter and sensor subpaths as shown in Figure 6.6. Using k segments on both
subpaths, we compute the low-order scattering contribution with 1, . . . , 2k bounces using bidi-
rectional path tracing and the high-order scattering contribution using our prediction model.

The singularity due to the geometry terms in the transport predictor (6.3) leads to a significant
amount of variance. Because it is not possible to derive a PDF for the transport predictor, we
were unable to use multiple importance sampling for reducing variance on paths connected by
the prediction. Therefore, we introduce a distance threshold r, which is used to avoid predic-
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PT BDPT

Medium Woodcock Ray-Marching Woodcock

αs g All All RR1 RR2

ρ = 10.0

0.99 0.00 8.43 22.78 1.65 0.60 0.57

0.99 0.85 - 53.83 3.64 3.93 1.82

1.00 0.00 3.99 24.41 1.73 0.52 0.53

1.00 0.85 - 50.44 4.30 3.81 1.84

ρ = 20.0

0.99 0.00 164.95 230.84 40.81 8.48 6.77

0.99 0.85 - 144.56 18.13 10.94 7.22

1.00 0.00 47.11 279.45 56.72 9.74 10.51

1.00 0.85 - 121.44 18.45 11.30 5.13

ρ = 40.0

0.99 0.00 207.72 - - 142.10 133.49

0.99 0.85 - - 161.08 46.11 33.03

1.00 0.00 160.66 - - 312.34 373.34

1.00 0.85 - 392.06 144.36 44.13 29.85

Table 6.1.: Time in seconds to generate a single data point on a single thread of a Xeon E5-2697 v2, using
a cloud density grid with a diameter of around 1, different density scaling factors ρ, scattering
albedos αs, eccentricities g, a maximum relative error of 10% and confidence level of 95%.
We compare two algorithms, path tracing (PT) and bidirectional path tracing (BDPT), two
distance sampling strategies (Woodcock, Ray-Marching) and 3 different connection schemes:
connecting all prefixes (All), using Russian roulette based on the phase function terms (RR1)
and using Russian roulette based on the phase function terms and the geometry term (RR2).
We highlight the best result for each scene configuration.

tions altogether for query locations xs and xe if ‖xs − xe‖ < r. In these cases, we instead
estimate transport using standard bidirectional path tracing, extend one subpath by another ver-
tex and repeat the process.

6.5. Evaluation

To evaluate our point-to-point model, we rendered a scene containing the cloud-1196 density
grid, matching the cloud used to generate the dataset for our single model. We used two lighting
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6. Point-To-Point Transport Model

Figure 6.6.: Visualization of bidirectional path tracing and predicting high-order scattering using our
model. The first 2k bounces are computed using bidirectional path tracing, the remaining
high-order scattering contribution is predicted by our point-to-point transport model.

scenarios:

• Backlit, cloud is illuminated from the back side, opposite to the view direction,

• Frontlit, cloud is illuminated from the front side, in line with the view direction.

For the medium properties, we used a density scaling factor ρ = 25, scattering albedo αs = 0.99
and an isotropic phase function. We used a distance threshold r = 0.08, corresponding to
approximately 2 mean free paths. For different initial number of bounces k ∈ {1, 2, 3, 4}, we
rendered the following images:

• High-order scattering reference, computed using bidirectional path tracing with 16k
samples per pixel,

• High-order scattering prediction, computed using our prediction model with 4k sam-
ples per pixel.

Each image using the prediction model was rendered twice, to get results for both the single
and multi models. We used a simplified rendering algorithm to generate the images, because
there were inconsistencies within our bidirectional path tracer. Therefore, we only computed
the high-order scattering contribution in order to evaluate the accuracy of our model. We use
two subpaths with k segments and compute the total transport either by our model or by using
the same bidirectional path tracer we used to generate the ground truth data. We completely
reject light transport between paths if their end vertices are closer than the distance threshold r.
This simplified rendering setup unfortunately results in a significant overhead when rendering
the reference images, because the first k segments of both subpaths are not weighted using MIS.

We report the bias introduced by our model in Table 6.2, computed as the mean of absolute
error between the pixel values of the reference and prediction images in linear space. We show
a comparison of the bias between our two models in Figure 6.7. In Figure 6.8 and Figure 6.9 we
visually compare the reference to the prediction obtained by the two models in both the backlit
and frontlit configurations. As before, all images are tone-mapped using gamma correction
and the error images show the absolute error between the reference and the prediction images,
visualizing the perceptual error.
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6.5. Evaluation

We observe that the bias increases significantly using the model trained on the larger dataset.
This can be explained either by the fact that the training has not fully converged after 80 epochs,
as shown earlier, or that the model is not capable of handling the larger training set and would
require more parameters or a finer grained density field discretization. We can also observe
that the bias decreases with higher number of initial bounces k, which has two main causes:
First, the magnitude of the estimated light transport decreases with higher values of k, leading
to lower absolute error and second, due to the increasing length of the initial subpaths, a larger
fraction of the complete light path is estimated with unbiased Monte Carlo integration. The
reason for the generally higher bias in the frontlit configuration is again due to the magnitude
of the light transport.

Backlit Frontlit

Training Set k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

single 0.0021 0.0010 0.0007 0.0007 0.0080 0.0045 0.0031 0.0021

multi 0.0112 0.0076 0.0061 0.0052 0.0279 0.0159 0.0109 0.0084

Table 6.2.: Bias introduced by the single and multi models using different number of initial bounces k
in both the backlit and frontlit configuration.
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Figure 6.7.: Comparison of bias between the single and multi models using different number of initial
bounces k in both the backlit and frontlit configuration.

We report the TTUV, computed as the mean of the pixel variance multiplied by the render time
in Table 6.3. Even though using the prediction is generally around 10 times faster than using
bidirectional path tracing to compute the same high-order scattering contribution, we found
that evaluating our model for individual light paths is generally too expensive to get reasonable
performance. This is especially true with an isotropic and rather thin participating media used
in our test scene. In this setting, simple path tracing actually performs much better, while
computing the full light transport, as shown in the comparison. Using our method is up to 100
times slower.

To check if the model trained on a larger dataset is more general, we rendered all of the 12 clouds
from our cloud set in Appendix A using k = 4. We only rendered the backlit configuration and
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6. Point-To-Point Transport Model

Training Set PT k = 1 k = 2 k = 3 k = 4

Backlit 10.3

single 706.0 7.9× 702.1 8.9× 734.0 10.4× 630.4 11.3×
multi 815.4 6.8× 750.5 8.3× 785.6 9.7× 676.0 10.5×

Frontlit 78.3

single 7099.8 6.0× 5803.3 7.4× 5551.7 8.3× 4238.5 9.3×
multi 8277.5 5.1× 6486.3 6.6× 6024.8 7.6× 4583.5 8.6×

Table 6.3.: TTUV and speedup using the single and multi models with different number of initial
bounces k in both the backlit and frontlit configuration. The speedup is with respect to com-
puting the high-order scattering reference using bidirectional path tracing. For comparison,
we also include the TTUV for computing the full transport using path tracing (PT).

computed the bias as before. We compare the bias introduced by the two models in Figure 6.10
and show a visual comparison on a subset of the clouds in Figure 6.11.

In general, the bias when using the multi model is significantly lower than with the single model,
which is to be expected, as the larger training set actually contains ground truth data for these
additional scenes. The only exceptions are cloud-1191 and cloud-1196, which can be explained
by the fact that the single single model is trained on ground truth data of the latter, and the
cloud-1191 is quite similar in shape and form. It is surprising however, that the bias in cloud-
1191 is significantly higher than for all other scenes. Experimenting with an increased number
of density features or a network with more parameters might improve this, but it is difficult to
argue where this rise in bias is coming from exactly.

6.6. Limitations

In theory, our point-to-point transport model has less limitations than the previously introduced
global transport model. The model is able to predict light transport inside heterogeneous media
and supports different types of light sources by using the bidirectional path tracing framework.

The model is currently limited from using a fixed phase function and a fixed scattering albedo,
which in theory might be alleviated by using a similar discretization as for the density field.
However, the additional dimensions would make the problem significantly harder, if not infea-
sible, both in terms of generating ground truth data as well as in terms of the model complexity.

The main issues we faced were related to generating ground truth data and using the model dur-
ing rendering. Computing light transport between two points inside a participating medium is
a difficult problem, leading to infinite variance when using unidirectional path tracing [Kal63].
Finite variance can be achieved with bidirectional path tracing using MIS, but generating ground
truth data is still prohibitively expensive. Even with our optimizations we were not able to
generate the amount of data we hoped for. Techniques such as joint importance sampling
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Figure 6.8.: Visual comparison between images generated with our prediction models and the reference
in the backlit configuration.

[GKH+13] could further help the performance, but generating ground truth data would still
remain a difficult problem.

During rendering, we faced the problem of not having a PDF with regards to the point-to-point
transport function. In consequence, we cannot use MIS to weight paths using the prediction,
leading to increased variance. Blindly connecting random subpaths again leads to infinite vari-
ance due to the geometry terms, which we have tried to avoid by using a distance threshold
during rendering.

We also found that evaluating our model with 1.6 million parameters is too expensive to com-
pute light transport along single light paths. Without the possibility to importance sample the
point-to-point transport function, using bidirectional path tracing without the prediction is ac-
tually far more efficient in the scenes we tested. However, we have not been able to expand our
model to handle strongly forward scattering phase functions and thicker media, which would
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Figure 6.9.: Visual comparison between images generated with our prediction models and the reference
in the frontlit configuration.

strongly affect the performance of bidirectional path tracing and make using predictions more
worthwhile.

Despite all the issues we faced, we have shown that our model is capable of predicting light
transport within a heterogeneous participating medium. This confirms that our density dis-
cretization is able to capture the relevant information needed for predicting light transport and
that our network architecture is able to learn the transport function.
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Figure 6.10.: Comparison of bias between the single and multi models in scenes containing all 12 clouds
from our cloud set rendered in the backlit configuration.
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Figure 6.11.: Visual comparison between images generated with our prediction models and the reference
in the backlit configuration.
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7
Conclusion and Future Work

In this thesis, we have investigated the problem of predicting high-order scattering using neural
networks. We have reviewed the theoretical background for rendering of participating media
and machine learning with focus on regression problems using neural networks. We have re-
ported on related work in the fields of rendering and machine learning applied to computer
graphics.

Our main contribution is the development of two novel models for predicting light transport
in participating media. Our global transport model predicts the total light transport from a
directional light source to a point within a simple homogeneous medium. With our point-to-
point transport model, we predict light transport between two points within a heterogeneous
medium. We have implemented software to create ground truth datasets for learning, as well
as using the models during rendering for predicting high-order scattering. We have conducted
experiments to examine both the performance and accuracy of our methods.

We have shown, that the global transport model is able to predict high-order scattering reason-
ably well, given that the constraints of the model are respected. It was surprising to see that the
model even produces usable results within a cloud with a heterogeneous interior, as long as the
number of bounces for computing low-order scattering is high enough. This shows that the fea-
tures based on measuring transmittance partly generalize from homogeneous to heterogeneous
media, which we did not anticipate in the beginning.

In our experiments, using our model resulted in a speedup with respect to TTUV of around a
factor 5 to 10, showing the potential for learning high-order scattering. Generating ground truth
data for training is straight forward and fast enough to generate large datasets.

The main challenges during the development of our first model have been the design of the
features, as well as their transformations, such that the neural network was able to learn the
predictor. The resulting network was quite small, using only 200 units on the first and 100
units on the second hidden layer. We have never observed over-fitting during the training of our
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predictor, which hints that the size of the training set and the effort for computing ground truth
data might be reduced.

In future work, the global transport model could be extended with support for additional types
of light sources. Environment maps in particular would be an interesting avenue, because they
allowed for more natural lighting. Furthermore, adapting the model to a distant disk light should
be straight forward and would allow to simulate light transport from the sun.

With the point-to-point transport model, our goal was to remove the main limitations of our first
model, namely the constraints on the fixed type of light source and the convex homogeneous
medium. In theory, the model is able to predict light transport in scenes with arbitrary light
sources and more complex participating media.

Due to the cost of evaluating our model and difficulties of applying it in a bidirectional path
tracer, we were unable to reduce the time for rendering high-order scattering. It would be
interesting to investigate possibilities for deriving a probability density function of the point-to-
point transport function and develop importance sampling techniques, as this would allow for
much more efficient rendering.

Light transport within participating media is strongly affected by the density field, which we
were able to capture with our discretization scheme and the deep network architecture used
in our second model. It would be interesting to combine our density features with the global
transport model, because this allowed predicting high-order scattering in much more complex
scenes.

Both of our models predict total light transport and therefore rely on features that are represen-
tative for the whole scene. During our investigations, we have tried to find methods to predict
transport in a hierarchical way, possibly allowing to reuse the same model on multiple scales.
This would significantly reduce the complexity of the scene representation and help to general-
ize the model. Unfortunately we were unable to derive a hierarchical model, but we believe this
is an interesting topic for future research.

Rendering in combination with machine learning techniques, such as deep neural networks,
is still a novel field, with many possibilities for future research. We have conducted initial
investigation of applying machine learning techniques to the problem of predicting high-order
scattering and have shown that there is potential for future research. We are eager to see how
this field will evolve in the coming years.
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Cloud Set

cloud-49 cloud-154 cloud-190 cloud-1090

cloud-1104 cloud-1153 cloud-1191 cloud-1196

cloud-1198 cloud-1595 cloud-1840 cloud-1873

Figure A.1.: Set of cloud density grids generated with our custom cloud modeler utility.
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B. Global Transport Model Evaluation

B.1. Scene A

k = 1 k = 2 k = 4 k = 8

Toplit

ρ = 20 0.0213 0.0157 0.0077 0.0027

ρ = 40 0.0290 0.0244 0.0161 0.0071

ρ = 80 0.0318 0.0271 0.0208 0.0126

Backlit

ρ = 20 0.0324 0.0156 0.0081 0.0037

ρ = 40 0.0363 0.0164 0.0113 0.0066

ρ = 80 0.0421 0.0210 0.0133 0.0091

Frontlit

ρ = 20 0.0156 0.0117 0.0069 0.0026

ρ = 40 0.0234 0.0195 0.0143 0.0078

ρ = 80 0.0279 0.0243 0.0206 0.0162

Table B.1.: Bias of our method compared to the reference.

Reference k = 1 k = 2 k = 4 k = 8

Toplit

ρ = 20 390.0 42.3 9.2× 58.5 6.7× 87.4 4.5× 117.4 3.3×

ρ = 40 842.8 51.2 16.5× 66.7 12.6× 94.8 8.9× 132.4 6.4×

ρ = 80 1716.9 67.6 25.4× 83.2 20.6× 113.8 15.1× 162.0 10.6×

Backlit

ρ = 20 513.4 85.1 6.0× 129.2 4.0× 178.6 2.9× 214.7 2.4×

ρ = 40 628.7 44.7 14.1× 64.6 9.7× 92.7 6.8× 116.7 5.4×

ρ = 80 722.8 28.2 25.7× 34.9 20.7× 47.6 15.2× 63.2 11.4×

Frontlit

ρ = 20 381.7 38.9 9.8× 47.0 8.1× 64.1 6.0× 94.2 4.1×

ρ = 40 1189.7 85.4 13.9× 100.8 11.8× 129.9 9.2× 174.8 6.8×

ρ = 80 3049.2 165.2 18.5× 191.1 16.0× 239.3 12.7× 317.0 9.6×

Table B.2.: Speedup with respect to TTUV of our method compared to the reference.
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Figure B.1.: Comparison of bias (top row) and speedup with respect to TTUV (bottom row).
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B.1. Scene A

Scene A - Toplit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.2.: Visual comparison between our method and the reference.
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Scene A - Backlit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.3.: Visual comparison between our method and the reference.
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B.1. Scene A

Scene A - Frontlit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.4.: Visual comparison between our method and the reference.
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B.2. Scene B

k = 1 k = 2 k = 4 k = 8

Toplit

ρ = 20 0.0218 0.0156 0.0092 0.0037

ρ = 40 0.0333 0.0261 0.0179 0.0098

ρ = 80 0.0395 0.0325 0.0248 0.0165

Backlit

ρ = 20 0.0520 0.0240 0.0128 0.0043

ρ = 40 0.0552 0.0245 0.0168 0.0115

ρ = 80 0.0566 0.0233 0.0167 0.0136

Frontlit

ρ = 20 0.0091 0.0066 0.0041 0.0024

ρ = 40 0.0174 0.0143 0.0098 0.0057

ρ = 80 0.0263 0.0232 0.0190 0.0132

Table B.3.: Bias of our method compared to the reference.

Reference k = 1 k = 2 k = 4 k = 8

Toplit

ρ = 20 111.1 7.7 14.4× 11.2 9.9× 19.7 5.6× 32.8 3.4×

ρ = 40 280.3 11.9 23.5× 15.2 18.5× 23.0 12.2× 38.6 7.3×

ρ = 80 579.5 16.5 35.1× 20.1 28.9× 27.6 21.0× 43.6 13.3×

Backlit

ρ = 20 351.7 84.1 4.2× 100.3 3.5× 135.7 2.6× 163.9 2.1×

ρ = 40 417.6 50.2 8.3× 55.2 7.6× 71.4 5.8× 94.2 4.4×

ρ = 80 514.8 35.8 14.4× 37.2 13.8× 45.0 11.4× 58.8 8.8×

Frontlit

ρ = 20 66.8 3.1 21.8× 4.7 14.3× 8.9 7.5× 17.1 3.9×

ρ = 40 230.0 10.0 23.0× 12.3 18.7× 18.5 12.4× 32.0 7.2×

ρ = 80 697.8 27.7 25.2× 32.7 21.4× 43.3 16.1× 65.8 10.6×

Table B.4.: Speedup with respect to TTUV of our method compared to the reference.
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Figure B.5.: Comparison of bias (top row) and speedup with respect to TTUV (bottom row).
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B.2. Scene B

Scene B - Toplit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.6.: Visual comparison between our method and the reference.
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Scene B - Backlit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.7.: Visual comparison between our method and the reference.
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B.2. Scene B

Scene B - Frontlit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.8.: Visual comparison between our method and the reference.
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B.3. Scene C

k = 1 k = 2 k = 4 k = 8

Toplit

ρ = 80 0.0091 0.0064 0.0042 0.0021

ρ = 160 0.0151 0.0115 0.0080 0.0047

ρ = 320 0.0207 0.0175 0.0128 0.0084

Backlit

ρ = 80 0.0459 0.0159 0.0071 0.0034

ρ = 160 0.0499 0.0190 0.0100 0.0059

ρ = 320 0.0535 0.0232 0.0126 0.0080

Frontlit

ρ = 80 0.0077 0.0053 0.0032 0.0015

ρ = 160 0.0143 0.0103 0.0072 0.0045

ρ = 320 0.0232 0.0178 0.0133 0.0095

Table B.5.: Bias of our method compared to the reference.

Reference k = 1 k = 2 k = 4 k = 8

Toplit

ρ = 80 142.4 6.8 20.8× 11.3 12.6× 19.8 7.2× 35.0 4.1×

ρ = 160 385.4 16.0 24.0× 24.1 16.0× 40.1 9.6× 68.2 5.6×

ρ = 320 901.2 35.9 25.1× 50.1 18.0× 77.9 11.6× 127.8 7.1×

Backlit

ρ = 80 1223.9 407.5 3.0× 461.1 2.7× 506.0 2.4× 537.5 2.3×

ρ = 160 2061.6 434.6 4.7× 507.6 4.1× 608.6 3.4× 708.5 2.9×

ρ = 320 3152.2 479.7 6.6× 583.8 5.4× 707.4 4.5× 860.9 3.7×

Frontlit

ρ = 80 87.1 4.2 20.5× 5.8 15.1× 10.1 8.6× 18.7 4.7×

ρ = 160 352.7 16.3 21.6× 20.3 17.3× 30.6 11.5× 51.0 6.9×

ρ = 320 1157.1 55.3 20.9× 66.3 17.5× 89.9 12.9× 139.6 8.3×

Table B.6.: Speedup with respect to TTUV of our method compared to the reference.
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Figure B.9.: Comparison of bias (top row) and speedup with respect to TTUV (bottom row).
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B.3. Scene C

Scene C - Toplit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.10.: Visual comparison between our method and the reference.
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B. Global Transport Model Evaluation

Scene C - Backlit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.11.: Visual comparison between our method and the reference.
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B.3. Scene C

Scene C - Frontlit

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

(a) k = 1 (b) k = 2 (c) k = 4 (d) k = 8 (e) Reference

Figure B.12.: Visual comparison between our method and the reference.
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