
Photon Beam Methods in Rendering

Simon Kallweit

Bachelor Thesis
August 2013

Supervisor:
Prof. Markus Gross

Advisors:
Dr. Wojciech Jarosz

Dr. Ralf Habel

Analysis and Optimization of Spatial and
Appearance Encodings of Words and

Sentences

Christian Vögeli

Master Thesis
SS 2005

Prof. Dr. Markus Gross

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Abstract

This thesis covers rendering methods for participating media, with special focus on recent
photon beam methods. We study the theory for rendering with participating media and dis-
cuss, among others, four particular rendering methods: Progressive Photon Beams, Virtual Ray
Lights, Photon Diffusion and Photon Beam Diffusion. We have reviewed and refactored an ex-
isting cross-platform renderer and extended it with consistent implementations of the presented
rendering methods. Using our renderer, we are able to compare the rendering methods and
discuss their advantages and disadvantages.

i

ii

Zusammenfassung

Diese Diplomarbeit befasst sich mit der Bildsynthese von voluminösen Materialien mit primärem
Fokus auf neuen Methoden basierend auf Photonen Strahlen. Wir beschreiben die grundlegende
Theorie zur Bildsynthese von voluminösen Materialen und befassen uns mit vier speziellen
Methoden: Progressive Photon Beams, Virtual Ray Lights, Photon Diffusion und Photon Beam
Diffusion. Wir haben eine existierende Software überarbeitet und auf dessen Basis einen neuen
plattformübergreifenden Renderer implementiert, welcher die vorgestellten Methoden zur Bildsyn-
these in konsistenter Weise umsetzt. Mit Hilfe der so enstandenen Software vergleichen wir die
verschiedenen Methoden und beschreiben ihre Vor- und Nachteile.

iii

iv

 Prof. Markus Gross

Bachelor’s Thesis:

Photon Beam Methods in Rendering

Introduction

The goal of this semester thesis is to implement and compare several methods based on photon mapping and
photon beams, namely

- Progressive Photon Beam
- Virtual Ray Lights
- Photon Diffusion
- Photon Beam Diffusion

To achieve this goal, an existing framework needs to be refactored and extended to facilitate the consistent
implementation of the mentioned methods.

Tasks

- Orientation, review of related work
- Reviewing code base
- Refactoring code base
- Implementation of Progressive Photon Beams
- Implementation of Photon Diffusion
- Comparison of methods

With these tasks fulfilled, the grade is 4.00

- Implementation of Virtual Ray Lights

With these tasks fulfilled, the grade is 5.00

- Implementation of Photon Beam Diffusion

With these tasks fulfilled, the grade is 6.00

Additional bonus tasks are:

- Implementation of the methods in the research renderer Mitsuba
- Implementation of heterogeneous media

Student

The following student will be working on the project:

Simon Kallweit
Grubenweg 8
3360 Herzogenbuchsee

Dates
Start Date: 18.Feb 2013
End Date: 18.Aug 2013

vi

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1

2 Theory 5
2.1 Radiometry . 6
2.2 Rendering Equation . 9
2.3 Participating Media . 10
2.4 Radiative Transport Equation . 10
2.5 Volume Rendering Equation . 12
2.6 Subsurface Scattering . 14

2.6.1 BSSRDF . 14
2.6.2 Searchlight Problem . 14
2.6.3 Classical Diffusion Theory . 15
2.6.4 Improved Diffusion Theory . 20

3 Rendering Methods 23
3.1 Volumetric Path Tracing . 24
3.2 Photon Mapping . 25
3.3 Photon Beams . 30
3.4 Progressive Photon Beams . 33
3.5 Virtual Ray Lights . 37

vii

Contents

3.6 Photon Diffusion . 41
3.7 Photon Beam Diffusion . 46

4 Implementation 51
4.1 Overview . 51
4.2 User Interface . 52
4.3 Software Architecture . 53

4.3.1 Foundation Layer . 53
4.3.2 Scene Description Layer . 54
4.3.3 Rendering Layer . 55

5 Results 59
5.1 Multiple Scattering . 59
5.2 Single Scattering . 67
5.3 Optimized Profile Evaluation . 68

6 Conclusion and Future Work 69

Bibliography 74

viii

List of Figures

2.1 Flux of a light source measured by the surface of an imaginary sphere. 6
2.2 Illustration of the concept of planar and solid angle. 7
2.3 Illustration of the difference between incident (arriving) and exitant (leaving)

radiance. 8
2.4 Illustration of the terms involved in the BRDF. 9
2.5 The four interactions modeled by the radiative transfer equation. 10
2.6 Illustration of the terms involved in the volume rendering equation. 13
2.7 The searchlight problem . 15
2.8 Dipole configuration . 17
2.9 Quadpole and multipole geometries . 18

3.1 Computing the accumulated inscattered radiance using ray marching together
with the volume radiance estimate, and the improved beam estimate. 30

3.2 Radiance estimation using photon points and photon beams. Note that there
are no photons inside the query sphere in case of using photon points (left),
whereas with photon beams, we have segments of the beams intersecting the
query sphere (right). 31

3.3 Illustration of the properties associated with a photon beam. 32
3.4 Illustration of the terms involved in "Beam×Beam 1D" radiance estimate using

a single photon beam, viewed from the side, where ~u extends out of the page
(left), and from a plane perpendicular to the query ray, where ~w extends out of
the page (right). 32

3.5 Volumetric caustics rendered using PPB with 100 passes of 10k beams each.
The different settings of the convergence parameter α clearly show the trade-
off between convergence and bias. 35

ix

List of Figures

3.6 Ray differentials describe spreading (blue) in addition to the origin and direc-
tion (red). 36

3.7 Illustration of the radiance transport using VPLs and VRLs. 37
3.8 Visualization of the VRL product sampling method. The heat map represents

the inverse-squared distance. 39
3.9 Evaluating the reflectance profile: (1) using only the dipole as the surface nor-

mal ~n1 is equal to ~ni, (2) blending between the dipole and the quadpole, (3)
using only the quadpole as the surface normal ~n3 is perpendicular to ~ni, (4)
blending between the quadpole and the multipole, (5) using only the multipole
as the surface normal ~n5 is opposite to ~ni. 44

3.10 Comparison between photon diffusion with classical and improved diffusion
theory. 45

4.1 PMRender running on Mac OSX with enabled HUD. 52
4.2 Overview of the software architecture used in PMRender. 53
4.3 Shape class hierarchy . 54
4.4 BSDF class hierarchy . 55
4.5 Texture class hierarchy . 55
4.6 DiffusionProfile class hierarchy . 56
4.7 Integrator class hierarchy . 56
4.8 Volume integrator class hierarchy . 57
4.9 Subsurface integrator class hierarchy . 58

5.1 Comparison of variance between PPB and VRL using an equal number of pho-
ton beams. Note that the render times are vastly different (5 minutes for PPB
against 90 minutes for VRL @ 1M photon beams). 62

5.2 Comparison for m = 0.0 (beer only), α = 0.01, T = 15 min. 63
5.3 Comparison for m = 0.01, α = 0.23, T = 15 min. 63
5.4 Comparison for m = 0.04, α = 0.53, T = 20 min. 64
5.5 Comparison for m = 0.12, α = 0.77, T = 20 min. 64
5.6 Comparison for m = 0.3, α = 0.91, T = 30 min. 65
5.7 Comparison for m = 0.5, α = 0.96, T = 35 min. 65
5.8 Comparison for m = 1.0 (milk only), α = 0.9987, T = 40 min. 66
5.9 Comparison between single scattering from PPB and two variants of PBD. . . . 67

x

List of Tables

1.1 Notation used throughout the thesis. 3

3.1 List of properties associated with a photon beam. 33
3.2 Properties associated with a diffusion photon. 42

5.1 Scattering and absorption coefficients used for materials in comparison render-
ings. 59

5.2 Improved performance gained from fmath and SSE optimized versions, with
std::exp being the baseline. We show the total time per pass, time for profile
evaluation per pass, speedup in profile evaluation and total speedup. 68

xi

List of Tables

xii

List of Algorithms

3.1 ESTIMATERADIANCE(x, ~ω) . 24
3.2 GENERATEPHOTONMAP . 26
3.3 TRACEPHOTON(xp, ~ωp,Φp) . 27
3.4 SCATTERSURFACE(xp, ~ωp,Φp, t, pdfds) . 28
3.5 SCATTERMEDIUM(xp, ~ωp,Φp, d, pdfd) . 28
3.6 SAMPLEFROMBEAM(Φb,xb, ~ωb, lb, Sb,Mb, ξ) 43

xiii

List of Algorithms

xiv

1
Introduction

The appearance of many natural materials such as liquids, dust, smoke, or even human skin are
strongly affected by light interacting with volumetric media, also called participating media.
Traditional rendering methods, solely based on surface scattering models, cannot capture the
effects of participating media, as they only consider the relationship between incoming and out-
going light in relation to a single surface location. In the more general case of objects containing
participating media, light is transported inside the medium, separating the location of incoming
and outgoing light. Rendering images with participating media, based on the radiative transport
equation (RTE) [Cha60] to model the transport in participating media, has long been an area
of interest in the computer graphics community. The problem is very challenging though, as
accurately simulating the interactions between light and participating media is computationally
very expensive.

In this thesis, we have thoroughly studied different methods for rendering images with partici-
pating media. We mainly focus on recent rendering methods based on photon beams [JNSJ11],
which can be used to describe the distribution of light in a virtual scene. To generate a set of
photon beams, also known as a photon map, we can trace beams of light through the scene by
scattering in the medium as well as on surfaces. The resulting photon map can then be used to
estimate the illumination at arbitrary points in the scene during the rendering process. We have
studied three rendering methods based on photon beams:

• Progressive photon beams (PPB) [JNT+11], which directly estimates illumination from
the photon beams

• Virtual ray lights (VRL) [NNDJ12], which considers photon beams as virtual light sources
to compute illumination

• Photon beam diffusion (PBD) [HCJ13b], which uses diffusion theory to compute illumi-

1

1 Introduction

nation at surfaces

In addition, we have also studied photon diffusion (PD) [DJ07], which is a predecessor of the
PBD method.

As a part of the thesis, we have implemented the above rendering methods in a small C++
renderer named PMRender. We have designed the software such that the implementation of
the various rendering methods is cohesive and benefits from their affinity to the photon beams
approach.

Using PMRender, we are able to compare the rendering methods and discuss their advantages
and disadvantages.

The contributions of this thesis are as follows:

• Introduction of the theory for rendering with participating media (Chapter 2)

• Overview of recent rendering methods based on photon beams (Chapter 3)

• Collective implementation of the rendering methods in PMRender (Chapter 4)

• Results and comparison of the rendering methods (Chapter 5)

We have tabulated the common notation used throughout the thesis in Table 1.1 .

2

Symbol Description

Ω4π Sphere of directions

Ω2π Hemisphere of directions

A Area

V Volume

x Position

~n Normalized surface normal

~ω Normalized direction (always points away from surface)

d~ω Differential solid angle: d~ω = sin θ dθ dφ

d~ω⊥ Differential projected solid angle

dA(x) Differential surface area at x

dA⊥(x) Differential surface area perpendicular to ~ω at x

L(x← ~ω) Incident radiance at x from direction ~ω

L(x→ ~ω) Outgoing radiance at x in direction ~ω

Le Emitted radiance

Lr Reflected radiance

Li Inscattered radiance

Lm Medium radiance (accumulated inscattered radiance)

fr(x, ~ω ↔ ~ω′) BRDF

S(xi, ~ωi ↔ xo, ~ωo) BSSRDF

p(x, ~ω ↔ ~ω′) Phase function

σs, σa, σt Scattering, absorption and extinction coefficients: σt = σs + σa

α Albedo: α = σs/σt

σ′s Reduced scattering coefficient: σ′s = (1− g)σs

σ′t Reduced extinction coefficient: σ′t = σ′s + σa

α′ Reduced albedo: α′ = σ′s/σ
′
t

τ(x↔ x′) Optical depth from x to x′:
∫ x′

x
σt(x)dx

Tr(x↔ x′) Transmittance from x to x′: e−τ(x↔x′)

ξ Uniformly distributed random number: ξ ∈ [0, 1]

Table 1.1: Notation used throughout the thesis.

3

1 Introduction

4

2
Theory

In this chapter, we will introduce the mathematical background for rendering, the process of
generating images by means of a computer program. Rendering realistic images requires an
accurate simulation of the physical behavior of light. A renderer will typically perform the
following three steps:

• Emitting light from various light sources

• Simulating the interactions of light at surfaces and media inside a virtual scene

• Capture light that falls onto a virtual camera sensor, ultimately making up the image seen
from the camera

In the first section, we will define the physical properties of light, called radiometry. Next, we
will introduce the rendering equation, the fundamental equation we need to solve in order to
render realistic images. Then we will introduce the concept of participating media, a model to
incorporate volumetric media such as fog, dust or liquids into the renderings. Next, we derive
the radiative transport equation (RTE), the fundamental differential equation describing the
behavior of light inside participating media, followed by the volumetric rendering equation, an
extension to the rendering equation incorporating the RTE to account for participating media. In
the last section, we will introduce the concept of subsurface scattering, a model where we only
consider the illumination at the surface, in order to approximate the effects of a participating
medium beneath it.

5

2 Theory

2.1 Radiometry

In this section we will introduce the basic set of mathematical tools to describe the behavior
of light, commonly known as radiometry. We can then build upon these definitions and basic
derivations to derive the theory for the actual rendering algorithms.

Flux

Figure 2.1: Flux of a light source measured by the surface of an imaginary sphere.

Radiant flux, or simply power is the total amount of energy passing through a surface per unit
time. It is usually denoted by the symbol Φ and measured in watts [W = J · s−1]. We can use
flux to describe the total amount of light emitted from a light source by placing the source inside
an imaginary sphere and measure the light passing through the surface of this sphere (Figure
2.1).

Irradiance and Radiant Exitance

Irradiance describes the area density of flux arriving at a surface. It is denoted by the symbol
E and is measured in [W ·m−2]. Irradiance can be expressed in terms of flux as:

E(x) =
dΦ(x)

dA(x)
(2.1)

When describing the flux leaving a surface we use the term radiant exitance denoted by the
symbol M .

Solid Angle

Solid angle is the extension of angles in the two-dimensional plane to an angle on a sphere.
The planar angle is the total angle subtended by an object with respect to some point p. If we
project an object o to a unit circle, a part of the circle s will be covered by the projection. This

6

2.1 Radiometry

(a) Planar angle (b) Solid angle

Figure 2.2: Illustration of the concept of planar and solid angle.

length s corresponds to the subtended angle θ and is measured in radians (Figure 2.2a). The
entire unit circle subtends an angle of 2π.

The solid angle extends the 2D unit circle into a 3D unit sphere. If we project an object o to the
unit sphere, a part of the sphere s will be covered by the projection. This area s corresponds
to the subtended solid angle and is measured in steradians [sr] (Figure 2.2b). The entire unit
sphere subtends a solid angle of 4π, while the hemisphere subtends 2π.

The set of points on the unit sphere centered at a point p can be used to describe all possible
directions in 3D space. We will use the symbol ~ω to denote these directions and assume by
convention that ~ω is of unit length.

Intensity

Intensity describes the directional distribution of light and is denoted by the symbol I and mea-
sured in [W · sr−1]. Intensity can be expressed in terms of flux as:

I(~ω) =
dΦ(~ω)

d~ω
(2.2)

An isotropic point light source with power Φ will have uniform intensity of I = Φ
4π

.

Radiance

The last and most important radiometric quantity is radiance, which describes the flux density
per unit solid angle, per unit area. Radiance is denoted by the symbol L and measured in
[W ·m−2 · sr−1]. Radiance expressed in terms of flux is:

L(x, ~ω) =
d2Φ(x, ~ω)

d~ω dA(x)⊥
=

d2Φ(x, ~ω)

d~ω dA(x) (~n · ~ω)
(2.3)

where dA(x)⊥ is the projected area of dA(x) on a hypothetical surface perpendicular to ~ω. In

7

2 Theory

practice, we will usually measure radiance at an actual surface, so we can use dA(x) (~n · ~ω)
instead, where ~n is the normalized surface normal. The term (~n·~ω) is also called foreshortening
factor.

Incident and Exitant Radiance Functions

(a) Incident radiance (b) Exitant radiance

Figure 2.3: Illustration of the difference between incident (arriving) and exitant (leaving) radiance.

It is useful to differentiate between incident and exitant radiance, describing light arriving at
a surface and light leaving from a surface. We will furthermore denote incident radiance as
L(x ← ~ω) (Figure 2.3a) and exitant radiance as L(x → ~ω) (Figure 2.3b), where ~ω always
points away from the surface.

Radiometric Relationships

Now that we have defined radiance, it is helpful to define the other radiometric quantities in
terms of radiance as well. In order to define flux in terms of radiance, we can take the definition
of radiance (2.3) and integrate both sides over the hemisphere Ω2π and the area A:

Φ =

∫
A

∫
Ω2π

L(x→ ~ω)(~n · ~ω) d~ω dA(x) (2.4)

Using definition (2.1), we can also write irradiance and radiant exitance in terms of radiance:

E(x) =

∫
Ω2π

L(x← ~ω)(~n · ~ω) d~ω (2.5)

M(x) =

∫
Ω2π

L(x→ ~ω)(~n · ~ω) d~ω (2.6)

8

2.2 Rendering Equation

2.2 Rendering Equation

The rendering equation [Kaj86] relates outgoing radiance at a surface to a sum of emitted and
reflected radiance:

L(x→ ~ω)︸ ︷︷ ︸
outgoing

= Le(x→ ~ω)︸ ︷︷ ︸
emitted

+Lr(x→ ~ω)︸ ︷︷ ︸
reflected

(2.7)

To obtain the reflected radiance Lr, we first need to introduce the BRDF, short for bidirectional
reflectance distribution function. The BRDF expresses the relationship between the irradiance
and the reflected radiance at a point x (Figure 2.4):

Figure 2.4: Illustration of the terms involved in the BRDF.

fr(x, ~ω
′ ↔ ~ω) =

dL(x→ ~ω)

dE(x← ~ω′)
=

dL(x→ ~ω)

L(x← ~ω′) (~n · ~ω′) d~ω′
(2.8)

Multiplying both sides of this equation with the denominator and then integrating over the
hemisphere we can derive the reflected radiance Lr:

Lr(x→ ~ω) =

∫
Ω2π

fr(x, ~ω
′ ↔ ~ω) L(x← ~ω′) (~n · ~ω′) d~ω′ (2.9)

We can now rewrite the full rendering equation as:

L(x→ ~ω)︸ ︷︷ ︸
outgoing

= Le(x→ ~ω)︸ ︷︷ ︸
emitted

+

∫
Ω2π

fr(x, ~ω
′ ↔ ~ω) L(x← ~ω′) (~n · ~ω′) d~ω′︸ ︷︷ ︸

reflected

(2.10)

We observe that the radiance L appears on both sides of the equation, meaning that in order
to compute the outgoing radiance L(x → ~ω) at a point x in outgoing direction ~ω, we need to
compute the incoming radiance L(x ← ~ω′) at position x for all incoming directions ~ω′. The
rendering equation is a Fredholm integral equation of the second kind.

Assuming that light travels through a vacuum, radiance will not change at any point x inside
the vacuum, meaning that L(x → ~ω) = L(x ← −~ω) always holds. This means that we can

9

2 Theory

directly relate incoming radiance at position xi on surface Si with outgoing radiance at position
xo on surface So using L(xi ← ~ω) = L(xo → −~ω).

Solving the rendering equation can be done in a number of ways, the most common are ra-
diosity [SP94], building upon finite element methods, and Monte Carlo based methods such as
path tracing. We will not further discuss finite element methods, but introduce volumetric path
tracing in Section 3.1.

2.3 Participating Media

While the rendering equation, introduced in the last section assumed a vacuum between sur-
faces, this is often not the case in reality. The space between surfaces is usually filled with
some medium, containing small particles (air, fog, dust, liquids). Light traveling through such
a medium is affected by these suspended particles, thus we say that the medium participates in
the light interactions happening between surfaces.

Because it is infeasible to explicitly compute the interactions between light and individual par-
ticles, we assume particles to be very small relative to the viewpoint, and use a probabilistic
model to approximate the effects of both sparse and dense participating media.

2.4 Radiative Transport Equation

(a) Absorption (b) Emission (c) Outscattering (d) Inscattering

Figure 2.5: The four interactions modeled by the radiative transfer equation.

To model the behavior of light in a participating medium, we consider the change in radiance
after an infinitesimal step along the light beam. We specifically consider the differential change
of radiance (~ω · ∇)L(x → ~ω) at position x in direction ~ω. The radiance is affected by four
possible interactions: absorption, emission, outscattering and inscattering as shown in Figure
2.5.

Absorption

The first interaction models absorption, which occurs when light is converted into other forms
of energy (e.g. heat) that are invisible to the human eye and therefore can be omitted from the
rendering process. The amount of absorbed light is described by the absorption coefficient σa,
which allows us to write the change in radiance in differential form as:

10

2.4 Radiative Transport Equation

(~ω · ∇)L(x→ ~ω) = −σa(x)L(x→ ~ω) (2.11)

Emission

In some cases the medium may produce light by itself, for example due to some chemical
reaction. The emitted light is described by the source function Q(x → ~ω) and depends on the
position x and the outgoing direction ~ω. Putting this in differential form we get:

(~ω · ∇)L(x→ ~ω) = Q(x→ ~ω) (2.12)

Outscattering

Some part of the light may be scattered in other directions than ~ω, effectively decreasing the
radiance along the ray. The amount of outscattered light is described by the scattering coefficient
σs, which leads to a similar differential form as seen for absorption:

(~ω · ∇)L(x→ ~ω) = −σs(x)L(x→ ~ω) (2.13)

Inscattering

Finally, we must also consider light which is scattered from other directions ~ω′ into direction
~ω, increasing the radiance along the ray. We use the scattering coefficient σs to account for
the fraction of light that is scattered. To compute the incoming radiance Li, we integrate over
the sphere, multiplying the radiance from direction ~ω′ with the phase function p(~ω′ → ~ω),
which describes the angular distribution of light intensity scattered from incoming direction ~ω′

to outgoing direction ~ω. In differential form we get:

(~ω · ∇)L(x→ ~ω) = σs(x) Li(x→ ~ω) = σs(x)

∫
Ω4π

p(~ω′ → ~ω) L(x← ~ω′) d~ω′ (2.14)

In an isotropic medium, meaning that light is scattered uniformly in all directions, the phase
function is constant. However, most real media are anisotropic, scattering most of the light in
one dominant direction. Many applications in computer graphics use the Henyey-Greenstein
(HG) phase function [HG41] to model both forward and backward scattering media.

To measure the anisotropy of a phase function, we can compute the mean cosine g:

g =

∫
Ω4π

(~ω′ · ~ω) p(~ω′ → ~ω) d~ω′ (2.15)

11

2 Theory

If g is positive, the phase function is mostly forward scattering, if negative, it is mostly backward
scattering. If g = 0, the phase function is isotropic. By convention, the phase function is
assumed to be normalized:

∫
Ω4π

p(~ω′ → ~ω) d~ω′ = 1 (2.16)

This means that for an isotropic medium, the constant phase function becomes p = 1
4π

.

Combining absorption (2.11) and outscattering (2.13) into an extinction term, using the extinc-
tion coefficient σt = σa + σs, we can now write the radiative transfer function (RTE) [Cha60]
as:

(~ω · ∇)L(x→ ~ω) = −σt(x)L(x→ ~ω)

+ Q(x→ ~ω)

+ σs(x)
∫

Ω4π
p(~ω′ → ~ω) L(x← ~ω′) d~ω′

(2.17)

2.5 Volume Rendering Equation

Given the RTE (2.17), introduced in the last section, we can derive an equation describing how
light is transported between surfaces. This is essential when rendering images with participating
media and has to be evaluated many times to generate an image.

In a simplified setting, we first only consider the effects of extinction (absorption and outscat-
tering) and derive a term to describe what fraction of photons reach a surface from another,
called beam transmittance or simply transmittance Tr. We start with the differential form of
extinction:

(~ω · ∇)L(x→ ~ω) = −σt(x)L(x→ ~ω) (2.18)

By integrating (2.18) along a ray between x and x′, we can derive the transmittance Tr:

Tr(x↔ x′) = e−τ(x↔x′) (2.19)

The term τ in the exponent is called optical thickness or optical depth and is defined as:

τ(x↔ x′) =

∫ x′

x

σt(x)dx (2.20)

In a homogeneous medium where σt is constant, the optical depth becomes trivial:

τ(x↔ x′) = σt‖x′ − x‖ (2.21)

12

2.5 Volume Rendering Equation

Using the definition of transmittance (2.19), we can define the reduced radiance, the incoming
radiance at position x due to outgoing radiance at position x′, in a participating medium:

L(x← ~ω) = Tr(x↔ x′) L(x′ → −~ω) (2.22)

Figure 2.6: Illustration of the terms involved in the volume rendering equation.

To also consider the effects of emission and inscattering, we can integrate the full RTE (2.17)
along a ray. This results in the equation known as the volume rendering equation:

L(x← ~ω) = Tr(x↔ xs) L(xs → −~ω)︸ ︷︷ ︸
reduced surface radiance

+

∫ xs

x

Tr(x↔ xt)Q(xt → −~ω) dxt︸ ︷︷ ︸
accumulated emitted radiance

+

∫ xs

x

Tr(x↔ xt) σs(xt) Li(xt → −~ω) dxt︸ ︷︷ ︸
accumulated inscattered radiance

(2.23)

where the inscattered radiance Li is defined as:

Li(x→ ~ω) =

∫
Ω4π

p(~ω′ → ~ω) L(x← ~ω′) d~ω′ (2.24)

In a situation as shown in Figure 2.6, the radiance arriving at x from direction ~ω consists of three
parts: The first term, reduced surface radiance, accounts for the reduced outgoing radiance
from the surface at xs as described in (2.22). The second term, accumulated emitted radiance,
accounts for the radiance emitted inside the medium on the ray from xs to x. Finally, the last
term, accumulated inscattered radiance, accounts for all the radiance scattered into direction
−~ω from within the medium. Computing the accumulated inscattered radiance, furthermore
also denoted as Lm (radiance from the medium), is by far the most expensive term to compute,
as it needs to be integrated along the ray and over the sphere, and recursively depends on the
volume rendering equation.

13

2 Theory

2.6 Subsurface Scattering

The solution of the RTE (2.17) provides the radiance at arbitrary positions and directions. Solv-
ing the RTE however is very difficult and general analytical solutions for the RTE do not exist,
allowing it to be only solved by numerical methods such as finite element methods or Monte
Carlo integration.

In a simplified setting, where we only consider the exitant illumination at surfaces, we can apply
the concept of subsurface scattering to efficiently render an approximation of the contribution
of a participating medium below a surface. Subsurface scattering methods are widely used in
production rendering due to their efficiency, which is more important than physically correct
rendering.

2.6.1 BSSRDF

To render an image using subsurface scattering, we only consider the exitant radiance at the
surface. We can extend the concept of the BRDF into the bidirectional surface scattering re-
flection distribution function (BSSRDF) [NRH+77], which for any two points and directions,
relates the incident flux Φi at surface position xi from direction ~ωi to the reflected radiance Lr
at surface position xo in direction ~ωo:

S(xi, ~ωi ↔ xo, ~ωo) =
dLr(xo → ~ωo)

dΦi(xi ← ~ωi)
(2.25)

S can be decomposed into a summation of three terms, the reduced radiance term S(0), ac-
counting for unscattered light, the single scattering term S(1), accounting for radiance scattered
exactly once and the multiple scattering term Sd, accounting for radiance scattered twice and
more:

S = S(0) + S(1) + Sd (2.26)

This separation is useful in order to use specialized algorithms for each term.

To solve for the total reflected radiance Lr, we can integrate (2.25) over both the incident posi-
tion xi and direction ~ωi and get:

Lr(xo → ~ωo) =

∫
A

∫
Ω2π

S(xi, ~ωi ↔ xo, ~ωo) L(xi ← ~ωi) (~n · ~ωi) d~ωi dA(xi) (2.27)

2.6.2 Searchlight Problem

To evaluate the BSSRDF (2.27) for arbitrary geometry, materials and illumination, we can of
course use Monte Carlo particle tracing, which while simple to implement, gives noisy results

14

2.6 Subsurface Scattering

Figure 2.7: The searchlight problem

and converges very slowly. For more efficient evaluation, researchers in the fields of medical
physics and astrophysics have come up with a simplified setting called the searchlight problem.

The searchlight problem, as illustrated in Figure 2.7, consists of a setting where a focused beam
of light, called a pencil beam, with unit flux is orthogonally incident on a semi-infinite pla-
nar slab of a homogeneous medium. Photons enter the medium through a Fresnel boundary
and travel downward through the medium until either absorbed or scattered in the medium.
Scattered photons may leave the surface directly or get scattered again, ultimately leaving the
surface or being absorbed in the medium. The sum of all photons exiting the upper boundary
at each point x forms a spatial reflectance profile. Summing all the photons that have scattered
exactly once gives us the diffuse single scattering profile R(1)(x), summing photons that have
scattered twice or more gives the diffuse reflectance profile Rd(x), which in case of an orthog-
onally incident pencil beam will form radially symmetric (1D) profiles, R(1)(x) = R(1)(‖x‖)
and Rd(x) = Rd(‖x‖).

In graphics, most methods approximate Sd, the multiple scattering term of the BSSRDF as
[JMLH01, DI11]:

Sd(xi, ~ωi;xo, ~ωo) =
1

π
Ft(xi, ~ωi, η)Rd(xo − xi)

Ft(xo, ~ωo, η)

4Cφ(η−1)
(2.28)

where the reflectance profile Rd is centered at the incident position xi, Ft are transmissive
Fresnel terms with η being the relative index of refraction from the outside medium to the
inside medium and Cφ is a constant needed for normalization, later defined in Section 2.6.4.
For efficient evaluation of this expression, most methods rely on diffusion theory to obtain
analytic approximations of the reflectance profile Rd.

2.6.3 Classical Diffusion Theory

The classical diffusion approximation only considers the first-order spherical harmonic expan-
sion of the radiance:

L(x, ~ω) ≈ 1

4π
φ(x) +

3

4π
~E(x) · ~ω (2.29)

15

2 Theory

where the fluence φ and vector flux ~E are the first two angular moments of the radiance distri-
bution:

φ(x) =

∫
Ω4π

L(x, ~ω) d~ω (2.30)

~E(x) =

∫
Ω4π

L(x, ~ω) ~ω d~ω (2.31)

Assuming an isotropic source functionQ, we can substitute the expansion of the radiance (2.29)
into the RTE (2.17) and integrate over all directions to obtain:

−D∇2φ(x) + σaφ(x) = Q(x) (2.32)

where D = 1
3σ′t

is the diffusion coefficient and σ′t is the reduced extinction coefficient. We can
analytically solve the above equation (2.32), if we choose Q to be an isotropic point source,
called a monopole, and assuming an infinite homogeneous medium. Assuming a unit power
source at the location of the monopole, the solution is the classical diffusion Green’s function:

φm(x) =
1

4πD

e−σtrd(x)

d(x)
(2.33)

where σtr =
√
σa/D is the transport coefficient, d(x) is the distance from x to the monopole

and the superscript on φm indicates the fluence for the monopole.

Source Function

In order to obtain the reflectance profile Rd, we first need to define a suitable source function Q.
Theoretically, each beam of light entering the medium through a smooth surface gives rise to a
refracted ray within the medium with exponentially decreasing intensity. Assuming unit power
at the origin of the refracted beam, we can describe this source function as:

Q(t) = σ′se
−σ′tt = α′σ′te

−σ′tt (2.34)

where t is the distance from the origin of the beam.

A simpler approach was originally proposed by Farell et al. [FPW92] and later adopted by
Jensen et al. [JMLH01], where all the power of the beam is concentrated on a single point at
the distance of one mean free path (1/σ′t) along the refracted beam, turning the source function
Q into a delta function. The associated power assuming unit power at the origin of the refracted
beam is:

∫ ∞
0

σ′se
−σ′ttdt = α′ (2.35)

16

2.6 Subsurface Scattering

Boundary Conditions

To apply the diffusion approximation in the semi-infinite slab configuration proposed in the
searchlight problem, we need to take into account the boundary condition raised by the surface.
This can be accomplished by placing mirrored negative sources above the surface for each
source inside the medium, which is generally referred to as the method of images. The mirroring
plane is placed at an extrapolated boundary above the surface, such that the fluence is zero
at a distance zb = 2AD above the surface. This offset takes into account the mismatch of
the refractive index using the reflection parameter A. For classical diffusion, we can use the
approximation:

A(η) ≈ 1 + 2C1(η)

1− 2C1(η)
(2.36)

where η is the relative index of refraction at the surface (from the medium containing the source
to the other medium) and Ci is the ith angular moment of the Fresnel function. There exist both
analytic solutions to the angular moments [Aro95] as well as approximations [d’E12].

Dipole

Figure 2.8: Dipole configuration

Using the method of images we can now define the fluence imposed by a dipole at distance zr
below the surface with unit power at the origin of the positive source:

φd(x) =
1

4πD

(
e−σtrdr

dr
− e−σtrdv

dv

)
(2.37)

where dr = d(x,xr) is the distance from x to the positive pole at xr and dv = d(x,xv) is the
distance to the negative pole at xv. The superscript for φd indicates the fluence due to the dipole.
The described configuration is illustrated in Figure 2.8.

Note that in contrast to most papers on diffusion, we define zv = −zr − 2zb as a position on a
Cartesian system with the origin at the surface and positive z direction into the medium, making
zv negative, instead of defining zv as the distance from the surface to the negative pole. This
will lead to more obvious derivations of the reflectance profiles, keeping positive and negative

17

2 Theory

contributions of the poles explicit, as no signs have to be flipped due to the meaning of the zv
value.

Radiant Exitance

In order to define the reflectance profileRd, we need to derive the radiant exitance on the surface
from the fluence of the dipole φd. We can use Fick’s law, which states that the vector flux is the
gradient of the fluence:

~E(x) = −D~∇φ(x) (2.38)

Furthermore, since the radiant exitance on the surface is the dot product of the vector flux with
the surface normal, we get:

Rd(x) = ~E(x) · ~n = −D(~∇ · ~n)φ(x) (2.39)

So in order to compute the reflectance profile Rd
d due to a dipole, we need to evaluate the

directional derivative (~∇ · ~n) of the fluence φd in direction of the surface normal and get:

Rd
d(x) =

1

4π

(
zr(1 + σtrdr)e

−σtrdr

d3
r

− zv(1 + σtrdv)e
−σtrdv

d3
v

)
(2.40)

Quadpole and Multipole

(a) Quadpole (b) Multipole

Figure 2.9: Quadpole and multipole geometries

Applying the dipole model on arbitrary geometry will lead to considerable errors in the re-
flectance profiles, as the geometry is essentially bent to a semi-infinite slab. We could use an
arbitrary number of poles, to satisfy the boundary condition and enforce zero fluence at an off-
seted geometry with distance 2zb to the actual geometry. This of course is hard to accomplish

18

2.6 Subsurface Scattering

in practice, but we can extend the dipole model with too additional geometric configurations,
the quadpole and the multipole [DJ07], to derive reflectance profiles which can be applied in a
more accurate way to arbitrary geometry.

For the quadpole, we assume a geometry as shown in figure Figure 2.9a, where the main
monopole is placed at depth zr below the top surface, and our shading location x is placed
at the side face at distance xr. The geometry forms a corner, and we take two boundaries into
account, one at the top and one at the side face. We can satisfy the second boundary condition
by mirroring the dipole around the side boundary at distance 2zb. The fluence for the quadpole
is defined as:

φq(x) =
1

4πD

(
e−σtrdr

dr
− e−σtrdv

dv
+
e−σtrdrm

drm
− e−σtrdvm

dvm

)
(2.41)

In the same way as for the dipole we can derive the reflectance profile for the quadpole and get:

Rq
d(x) = 1

4π
xr(1+σtrdr)e−σtrdr

d3r

− 1
4π

xv(1+σtrdv)e−σtrdv

d3v

+ 1
4π

xr(1+σtrdrm)e−σtrdrm

d3rm

− 1
4π

xv(1+σtrdvm)e−σtrdvm

d3vm

(2.42)

For the multipole, we assume a geometry as shown in figure Figure 2.9b, where the main
monopole is placed at depth d below the top surface in a slab with thickness l, and our shading
location x is placed at the reflective side at the top. To satisfy the boundary condition, we can
mirror the monopole analogously to the dipole. To satisfy the boundary condition at the bottom,
we can mirror the two poles of the dipole around a mirror plane at distance zb below the bottom
side. This will inevitably harm the boundary condition at the top, so we can again mirror the
two new poles around the mirror plane at the top and continue this process ad infinitum. In
practice, we can get away by mirroring only a few times, as the error gets neglectable. The
depth of the poles are defined as:

zr,i = 2i(l + 2zb) + d

zv,i = 2i(l + 2zb)− d− 2zb, i = −n, . . . , n
(2.43)

and the corresponding fluence induced by the multipole configuration is:

φu(x) =
1

4πD

n∑
i=−n

(
e−σtrdr,i

dr,i
− e−σtrdv,i

dv,i

)
(2.44)

Applying Fick’s law and taking the dot product of the vector flux with the surface normal we
get the reflectance profile for the multipole:

19

2 Theory

Ru
d(x) =

1

4π

n∑
i=−n

(
zr,i(1 + σtrdr,i)e

−σtrdr,i

d3
r,i

− zv,i(1 + σtrdv,i)e
−σtrdv,i

d3
v,i

)
(2.45)

Using the multipole configuration as described above, we evaluate the reflectance profile at the
reflective side of the slab. To evaluate at the transmissive side, we can simply replace the depth
d of the source with l − d, essentially moving the shading location to the transmissive side of
the slab.

To apply the dipole, quadpole and multipole configurations to arbitrary geometry, we can use
the angle between the surface normal above the main pole and the surface normal at the shading
location to blend between the three configurations. This will be explained in more detail in the
section on photon diffusion (Section 3.6).

2.6.4 Improved Diffusion Theory

Recently, d’Eon et al. introduced several improvements [d’E12] to the classical diffusion in-
troduced in the last section. This includes a modified diffusion equation, improved reflection
parameter A as well as more accurate calucation of the exitant radiance.

Improved Diffusion Equation

Grosjean [Gro56, Gro58] introduced a different solution for the approximation of the fluence
due to a monopole in an infinite homogeneous medium:

φm(x) =
e−σ

′
td(x)

4πd2(x)
+

α′

4πD

e−σ
′
td(x)

d(x)
(2.46)

where the first term accounts for exact single scattering, and the second accounts for approxi-
mate multiple scattering using the improved diffusion coefficient:

D =
2σa + σ′s

3σ′t
2 =

1

3σ′t
+

σa

3σ′t
2 (2.47)

The transport coefficient σtr is defined using the new diffusion coefficient as σtr =
√
σa/D.

Removing the first term for single scattering from (2.46), as this can be implemented using var-
ious methods we will introduce later on, we can derive the improved diffusion equation, which
only differs from the classical diffusion equation by the additional reduced albedo coefficient
α′, explicitly accounting for multiple scattering:

−D∇2φ(x) + σaφ(x) = α′Q(x) (2.48)

20

2.6 Subsurface Scattering

Boundary Condition

To account for the boundary condition in the semi-infinite slab setting, we can apply the method
of images in the same way as in the classical diffusion, using the improved reflection parameter:

A(η) ≈ 1 + 3C2(η)

1− 2C1(η)
(2.49)

Radiant Exitance

In contrast of using Fick’s law to derive the radiant exitance as seen in the classical diffusion,
d’Eon and Irving use a Robin boundary condition originally introduced by Kienle and Patterson
[Aro95, KP97], which uses a linear combination of both fluence and its derivative, the vector
flux. This leads to a more accurate radiant exitance, defined as:

Rd(x) = Cφφ(x) + C ~E

(
−D(~∇ · ~n)φ(x)

)
(2.50)

whereCφ = 1
4
(1−2C1(η)) andC ~E = 1

2
(1−3C2(η)). Hence we can write the diffuse reflectance

profile of the dipole as a sum of the fluence and the vector flux:

Rd
d(x) = Rd,φ

d (x) +Rd, ~E
d (x) (2.51)

with

Rd,φ
d (x) = Cφ

α′

4πD

(
e−σtrdr

dr
− e−σtrdv

dv

)
(2.52)

Rd, ~E
d (x) = C ~E

α′

4π

(
zr(1 + σtrdr)e

−σtrdr

d3
r

− zv(1 + σtrdv)e
−σtrdv

d3
v

)
(2.53)

Note that we can also easily derive the reflectance profiles for the quadpole and multipole con-
figurations, as defined for the classical diffusion theory in (2.42) and (2.45).

Using the improved diffusion theory over classical theory delivers consistently more accurate
profiles with neglectable additional computational overhead and should therefore always be pre-
ferred in computer graphics applications. A summary on both classical and improved diffusion
theory can be found in a recent tech report by Habel et al. [HCJ13a].

21

2 Theory

22

3
Rendering Methods

In this chapter, we will introduce different methods for rendering scenes with participating
media. As this is a very actively and widely studied research topic, we will primarily focus on
recent methods based on so-called photon beams [JNSJ11].

For introductory purposes, we will first describe volumetric path tracing, a method using Monte
Carlo integration to numerically solve the volume rendering equation (2.23). While simple to
implement and unbiased by nature, volumetric path tracing is plagued with variance and slow
convergence, and may not be feasible in complex scenes and practical applications.

In the next section, we introduce the concept of photon mapping [JC98], which improves the
efficiency of volumetric path tracing considerably. This is accomplished by tracing a set of
photons (discrete packets of light emitted from light sources) through the scene and storing
them in a photon map, which is then queried during the rendering stage to get local radiance
estimates.

Once we have covered some background, we can then introduce the concept of photon beams
[JNSJ11], which are an extension to the point based photons used in traditional photon mapping.
Photon beams form the framework for the rest of the rendering algorithms presented in this
chapter, which we have all implemented in our renderer PMRender.

The first two, progressive photon beams [JNT+11] and virtual ray lights [NNDJ12], use photon
beams to efficiently evaluate the volume rendering equation. The former uses progressive radi-
ance estimation on the photon beams and the latter is a so-called many light algorithm, basically
treating the photon beams as individual light sources.

The last two methods, photon diffusion [DJ07] and photon beam diffusion [HCJ13b], are sub-
surface scattering methods. They are based on diffusion theory to approximate highly scattering
homogeneous media.

23

3 Rendering Methods

3.1 Volumetric Path Tracing

Algorithm 3.1 ESTIMATERADIANCE(x, ~ω)

1: t← TRACE(x, ~ω)
2: (d, pdfd, pdfds)← SAMPLEPROPAGATION()
3: if d < t then . Medium Scattering
4: x← x + d~ω
5: (~ωi, pdfi)← SAMPLEPHASEFUNCTION(x, ~ω)

6: return σs Tr(d) p(~ω′→~ω)
pdfd pdfi

× ESTIMATERADIANCE(x, ~ωi)
7: else . Surface Scattering
8: x← x + t~ω
9: (~ωi, pdfi)← SAMPLEBRDF(x, ~ω)

10: return Le + Tr(t)fr(x,~ω′↔~ω)
pdfdspdfi

× ESTIMATERADIANCE(x, ~ωi)
11: end if

Volumetric path tracing is a rendering method based on Monte Carlo integration to numerically
solve the volume rendering equation (2.23). The basic idea is to use random walk sampling,
where we recursively trace a ray from the eye through the scene, and randomly sample surface
and medium scattering events.

For this simple example, we assume a homogeneous gray medium and only consider the re-
duced surface radiance and accumulated inscattered radiance from the volume rendering equa-
tion (2.23). Algorithm 3.1 shows the pseudo code for the volumetric path tracer we describe in
the rest of this section:

To render an image, we set up a camera ray for each pixel and call the ESTIMATERADIANCE

function. We typically average over a number of radiance samples to reduce variance.

To compute the radiance, we first determine the distance t to the nearest surface by intersecting
a ray with the virtual scene. Next, we need to stochastically choose the distance d to the next
scattering event. The probability of light traveling unobstructed in the medium for a distance d
is described by the transmittance Tr(d) (2.19). To reduce variance, we can importance sample
the distance using a probability density function proportional to the transmittance. For the
homogeneous medium we can use the exponential PDF and apply the inversion method to
sample the propagation distance d:

d = − log(1− ξ)
σt

with pdfd = σt e
−σtd (3.1)

where ξ ∈ [0, 1) is a uniform random number, σt = σs + σa is the extinction coefficient and
pdfd is the probability of choosing d. Now we can decide to scatter in the medium (d < t) or at
the surface (d ≥ t).

For medium scattering, we first move x to the medium scattering location. Then we sample the
phase function to get an incident direction ~ωi and the probability pdfi. Finally, we compute the
returned radiance by recursively calling the ESTIMATERADIANCE function and weighting the
result with the transmittance and phase function terms divided by the probabilities pdfd and pdfi.

24

3.2 Photon Mapping

Note that for the case of a homogeneous gray medium, the transmittance term will cancel with
the probability pdfd, and for a perfectly importance sampled phase function, the phase function
term will cancel with the probability pdfi:

σs Tr(d) p(~ω′ → ~ω)

pdfd pdfi
=
σs
σt

= α (3.2)

This means that we could also apply Russian roulette to decide between absorption and scatter-
ing, in order to achieve a constant unity weight for the recursive evaluation of ESTIMATERA-
DIANCE.

For surface scattering, we first move x to the surface scattering location. Then we sample
the BRDF to get an incident direction ~ωi and the probability pdfi. Finally, we compute the
returned radiance by summing the emitted radiance at the surface Le with the radiance from re-
cursively calling the ESTIMATERADIANCE function, weighted by the transmittance and BRDF
terms divided by the probabilities pdfds and pdfi, where pdfds is the probability of choosing a
propagation distance d ≥ t:

pdfds =

∫ ∞
s=t

σt e
−σtsds = e−σtt (3.3)

Note again that in a homogeneous gray medium the transmittance term cancels with the proba-
bility pdfds. By importance sampling the BRDF, we can achieve cancellation of the BRDF term
as well, e.g. by using the cosine distribution for a diffuse lambertian BRDF, we can reduce the
weight to the diffuse reflectance value (albedo).

The main problem with path tracing algorithms is variance and slow convergence. If for ex-
ample we assume a scene containing only a small light emitting surface, most random walks
generated by the above algorithm will never hit the emitter and therefore will not contribute
any radiance to the image. There are many techniques to improve the efficiency of path tracing
algorithms, but these are not in the scope of this thesis.

3.2 Photon Mapping

Photon mapping, introduced by Jensen [JC95, Jen96, JC98, Jen01], is an efficient rendering
technique to generate images with global illumination. In general, photon mapping generates
and caches illumination information in a preprocess step and reuses this information for better
efficiency during the actual rendering of the image. Besides being able to capture common
global illumination effects such as color bleeding and caustics, the photon mapping technique
also allows to capture the effects of participating media.

Algorithm

Rendering with photon mapping is a two pass process. In a first pass, a number of photons are
emitted from the light sources and traced through the scene. The resulting set of photons, called

25

3 Rendering Methods

a photon map, represents a discrete distribution of the flux inside the scene. In the second pass,
a Monte Carlo ray tracer is used to generate an image, querying the photon map to compute the
local radiance at arbitrary points by means of density estimation.

Photon Map

To generate a photon map (Algorithm 3.2), we start by emitting photons from light sources.
The light source is selected using CHOOSELIGHT, giving the light source l to emit from and an
associated probability pdfl. Next, a photon p is emitted by calling EMITPHOTON, which sets
the position xp and the direction ~ωp (importance sampled based on the type of light source) and
the power Φp. The photon is then traced through the scene and stored at various locations by
calling TRACEPHOTON. Once enough photons have been captured, the process terminates and
the power of all stored photons is scaled by 1/nemitted.

Algorithm 3.2 GENERATEPHOTONMAP

1: nemitted ← 0
2: repeat
3: (l, pdfl)← CHOOSELIGHT

4: (xp, ~ωp,Φp)← EMITPHOTON(l)
5: TRACEPHOTON(xp, ~ωp,Φp/pdfl)
6: nemitted ← nemitted + 1
7: until photon map full
8: scale power of all stored photons by 1/nemitted

Tracing Photons

Tracing a photon through the scene is an iterative process, storing the photon to the photon map
at surface and medium scattering positions. The process ends if the photon gets absorbed, or a
maximum number of iterationsmaxdepth is reached. Simply stopping at the maximum depth, as
done in the TRACEPHOTON method, introduces bias. This can be prevented by using Russian
roulette to decide between continuing and stopping tracing the photon.

At each iteration, we first trace a ray in the direction of the photon, computing the distance
t to the next surface, or infinity, if there is no surface in the way. Photons travel through the
medium for some distance, until they are either absorbed or scattered. Similarly to volumetric
path tracing, we can choose the propagation distance to the next absorption or scattering event
using the exponential probability density function (3.1):

d = − log(1− ξ)
σ̂t

with pdfd = σ̂t e
−σ̂td (3.4)

where σ̂t can be defined arbitrarily, but in order to obtain good sampling, should correspond to
the real extinction coefficient σt. In a gray medium, we can simply set σ̂t = σt, in a non gray
medium we can for example use the average of the components of σt.

26

3.2 Photon Mapping

This type of sampling the propagation distance d assumes that the medium is homogeneous. In
a heterogeneous medium, it is more difficult to compute the propagation distance [JC98].

Once the propagation distance d is computed, we can decide if the photon interacts with the
medium (d < t) or with the surface (d ≥ t). We then either call SCATTERMEDIUM or SCAT-
TERSURFACE to scatter the photon in the medium or at a surface and finally store the photon in
case it did not get absorbed.

Algorithm 3.3 TRACEPHOTON(xp, ~ωp,Φp)

1: depth← 0
2: while depth < maxdepth do
3: t← TRACE(xp, ~ωp)
4: (d, pdfd, pdfds)← SAMPLEPROPAGATION

5: if d < t then . Medium Scattering
6: if not SCATTERMEDIUM(xp, ~ωp,Φp, d, pdfd) then
7: return
8: end if
9: STOREPHOTON(xp, ~ωp,Φp, depth)

10: else . Surface Scattering
11: if not SCATTERSURFACE(xp, ~ωp,Φp, t, pdfds) then
12: return
13: end if
14: STOREPHOTON(xp, ~ωp,Φp, depth)
15: end if
16: depth← depth+ 1
17: end while

Surface Scattering

If a photon interacts with a surface (Algorithm 3.4), we use Russian roulette to determine if
the photon is absorbed or scattered based on the diffuse reflectance of the BRDF α. In case of
scattering, or more precisely transmission or reflection, we can choose the scattered direction by
importance sampling the BRDF. We weight the power of the new photon by the transmittance
and BRDF terms, divided by the probabilities pdfds and pdfi and the albedo α, due to Russian
roulette.

Medium Scattering

If a photon interacts with the medium (Algorithm 3.5), we again use Russian roulette to deter-
mine if the photon is absorbed or scattered based on the albedo α = σs/σt. In case of scattering,
we choose the scattered direction by importance sampling the phase function. To compute the
power of the scattered photon, we take into account the scattering, transmittance and phase
function terms, and divide by the probabilities pdfd and pdfi and the albedo α, due to using
Russian roulette. Note that in case of a gray medium (σ̂t = σt) and perfectly sampled phase

27

3 Rendering Methods

Algorithm 3.4 SCATTERSURFACE(xp, ~ωp,Φp, t, pdfds)

1: if ξ < α then . Scattering
2: xp ← xp + t~ωp
3: (~ωi, pdfi)← SAMPEBRDF(xp, ~ωp)

4: Φp ← Φp
Tr(t) fr(xp,~ωi↔~ωp)

pdfds pdfi α

5: ~ωp ← ~ωi
6: return true
7: else . Absoprtion
8: return false
9: end if

function, the transmittance and phase function terms cancel with the probabilities, simplifying
the scaling factor to σs Tr(d) p(x,~ωi→~ωp)

pdfd pdfi α
= α

α
= 1, therefore keeping the power of the photons

constant.

Algorithm 3.5 SCATTERMEDIUM(xp, ~ωp,Φp, d, pdfd)

1: if ξ < α then . Scattering
2: xp ← xp + d~ωp
3: (~ωi, pdfi)← SAMPLEPHASEFUNCTION(xp, ~ωp)

4: Φp ← Φp
σs Tr(d) p(x,~ωi→~ωp)

pdfd pdfi α

5: ~ωp ← ~ωi
6: return true
7: else . Absoprtion
8: return false
9: end if

Photon Storage

Each time a scattering event occurs, we store a photon (xp, ~ωp,Φp) in the photon map. Instead
of using a list to store the photons, we can also use a spatial acceleration structure to allow
for more efficient range lookups during radiance estimation. One popular solution is to use a
balanced kd-tree [Ben75].

Radiance Estimation

Once the photon map is populated, we can use it to estimate the radiance at surfaces and inside
the medium. To compute the reflected radiance at a surface, we can use the definition of the
radiance in terms of flux (2.3) and plug it into the equation for reflected radiance (2.9) to get the
following term:

Lr(x→ ~ω) =

∫
Ω2π

fr(x, ~ω
′ ↔ ~ω)

d2Φ(x← ~ω′)

d~ω′ dA(x)
d~ω′ (3.5)

28

3.2 Photon Mapping

This integral can be approximated using the photon map by computing the surface radiance
estimate [Jen01]:

Lr(x→ ~ω) ≈ 1

A(x)

k∑
p=1

fr(x,−~ωp ↔ ~ω)Φp(x← −~ωp) (3.6)

where A(x) = πr2 and r is the radius of the sphere containing the k nearest photons around x.

Similar to the radiance estimate for surfaces, we can also use the photon map to estimate the
radiance of inscattered radiance Li, which can then be used to compute the radiance from the
medium:

Lm(x← ~ω) =

∫ xs

x

Tr(x↔ xt) σs(xt) Li(xt → −~ω) dxt (3.7)

We can estimate the inscattered radiance using the volume radiance estimate [JC98]:

Li(xt ← ~ω) ≈ 1

σs(xt)V(xt)

k∑
p=1

p(xt, ~ωp ↔ ~ω)Φp(xt ← −~ωp) (3.8)

where V(xt) = 4
3
πr3 and r is the radius of the sphere containing the k nearest photons around

xt.

Rendering

To render an image using photon mapping, we can use a Monte Carlo ray tracer. A typical
implementation will create two seperate photon maps for surface shading, the global photon
map, containing photons which scattered at least once on a diffuse surface, and the caustic
photon map, containing photons which scattered at specular surfaces only. This is useful be-
cause we need much more accuracy for caustics, as they are visualized directly. When shading
surfaces, we can compute the reflected radiance by separating the contributions into different
components, each computed individually: direct illumination, specular reflections, caustics and
soft indirect illumination. Direct illumination and specular reflections will typically be com-
puted using ray tracing, while caustics and soft indirect illumination can be estimated using the
surface radiance estimate introduced in the last section.

To compute the radiance from a participating medium, our main focus, we have to solve the
volume rendering equation (2.23). Computing the reduced surface radiance and accumulated
emitted radiance terms is trivial, so we will only consider the term for accumulated inscattered
radiance (3.7). We can solve this integral by means of a Riemann sum, often also referred to as
ray marching in the context of computer graphics:

Lm(x← ~ω) ≈
S−1∑
t=0

Tr(x↔ xt) σs(xt) Li(xt → −~ω) ∆t (3.9)

29

3 Rendering Methods

(a) Ray marching (b) Beam estimate

Figure 3.1: Computing the accumulated inscattered radiance using ray marching together with the vol-
ume radiance estimate, and the improved beam estimate.

We split up the ray from x to xs into S segments, each segment with length ∆t = ‖xs−x‖
S

,
and evaluate the inscattered radiance Li using the volume radiance estimate (3.8) at points
xt = x + t∆t~ω. A visualization of this is shown in Figure 3.1a.

Using ray marching and the volume radiance estimate dramatically improves the efficiency of
computing the accumulated inscattered radiance compared to pure path tracing. The improved
efficiency does not come for free though, as the photon mapping method introduces bias to the
obtained solution in form of blurring, whereas path tracing is unbiased but suffers from variance
and slow convergence. Still, this is a tradeoff willingly paid in most situations, as the resulting
image shows higher quality at equal render times, despite the errors introduced through bias.

Beam Estimate

The efficency of the ray marching process shown in the last section is primarily bounded by the
relativly costly range lookups in the photon map for the radiance estimates. While using too
many estimates is bad for performance, and may lead to using the same photons in multiple esti-
mates, using too few estimates may introduce noise and skip many photons from contributing to
the inscattered radiance. This observation led to the introduction of the beam estimate [JZJ08],
which queries the photon map by means of a beam. This is accomplished by assigning variable
radii to the individual photons and then intersecting the beam with all the photons in the photon
map as shown in Figure 3.1b. The beam estimate method produces significantly higher quality
images than conventional photon mapping.

3.3 Photon Beams

Photon mapping, as we have seen in the last section, is a very powerful concept to accelerate
rendering methods incorporating effects from global illumination and participating media. By
splitting the rendering process into two separate steps, a light emitting step (photon shooting)
and a light gathering step (radiance estimation), we can reuse many computations and greatly
improve rendering performance. Representing the flux field using only point based photons

30

3.3 Photon Beams

(a) Point based photons (b) Beam based photons

Figure 3.2: Radiance estimation using photon points and photon beams. Note that there are no photons
inside the query sphere in case of using photon points (left), whereas with photon beams, we
have segments of the beams intersecting the query sphere (right).

at surface and media scattering positions is not optimal though, as we throw away valuable
information of the actual photon paths. To render high quality images using point based photon
mapping, we either need to compute a high density photon map by shooting a very large number
of photons, or we have to use a large search radius for the radiance estimation, which results in
high bias. As seen in the last section, we can greatly improve accuracy as well as performance
by extending the point based query for the radiance estimate with a beam based query. In the
same spirit, we can also extend point based photons into photon beams, to further improve the
efficiency and accuracy of radiance estimation.

In their recent paper about volumetric radiance estimation using photon points and photon
beams [JNSJ11], Jarosz et al. have introduced a comprehensive theory for radiance estima-
tion, including generalizations of the traditional radiance estimates for point based photons, as
well as a set of new radiance estimates using the concept of photon beams.

The main idea of photon beams is to not only store the scattering locations as point based
photons in the photon map, but store the full paths of photons in form of photon beams. By
storing full photon paths, we get a denser photon map for free, without spending more time
creating it. This is visualized in Figure 3.2. Using radiance estimates based on photon beams,
we can utilize this denser nature of photon map. The derivation of the photon beam radiance
estimates are based on the concept of photon marching, where we place photons with decreasing
intensity (due to the transmittance term) at regular intervals along the path of the photon. We
will not go into the details of the derivation of all the photon beam radiance estimates, but
instead only provide the definition of the "Beam × Beam 1D" estimate, which we use in the
progressive photon mapping rendering method Section 3.4.

Photon Beam Shooting

To create a set of photon beams, we still use the same random walk procedure as we use for
traditional volumetric photon mapping (Section 3.2), with a few changes:

• We directly store a photon beam when it is emitted from a light source, using the emitted
power as the power of the photon beam.

31

3 Rendering Methods

• The length of the photon beam is always defined as the distance to the nearest intersecting
surface.

• We use the same approach to sample surface and medium scattering events, but instead
of storing a photon, we store a photon beam with its origin at the scattering location and
its direction set to the sampled scattering direction and then continue tracing.

We have implemented this algorithm in a module called photon beam shooter and use it to
create sets of photon beams for the various rendering methods we introduce in the next chapters.
The photon beam shooter is configured with the number of beams to create and the requested
minimum and maximum media depth required by the respective rendering method. This will
be explained in more detail in Section 3.4 and Section 3.6.

Photon Beam Representation

Figure 3.3: Illustration of the properties associated with a photon beam.

Each photon beam is described by a set of properties that we use both in our implementation
and as a common notation for the rest of the thesis. These properties are visualized in Figure
3.3 and described in Table 3.1.

Beam × Beam 1D Estimate

Figure 3.4: Illustration of the terms involved in "Beam × Beam 1D" radiance estimate using a single
photon beam, viewed from the side, where ~u extends out of the page (left), and from a plane
perpendicular to the query ray, where ~w extends out of the page (right).

32

3.4 Progressive Photon Beams

Symbol Description

Φb Power of the beam (at origin)

xb Position (origin) of the beam

~ωb Direction of the beam

lb Length of the beam

rb Radius of the beam

Sb Plane equation of the interface at the beam incident point

Mb Pointer to the medium the beam is suspended in

mb Number of scattering events leading to this beam (0 = not scatter yet)

Table 3.1: List of properties associated with a photon beam.

The "Beam × Beam 1D" radiance estimate directly computes the radiance of a photon beam
due to a query ray. In the following, we assume a camera ray at position x in direction ~ω and a
photon beam with power Φb, position xb, direction ~ωb and radius rb.

To compute the radiance estimate, we create a coordinate system (~u, ~v, ~w), where ~w = −~ω,
the opposite direction of the camera ray, ~v = ~ωb, the direction of the beam, and ~u = ~v × ~w,
the direction perpendicular to both of them (Figure 3.4). The radiance estimate is defined as
[JNSJ11]:

Lm(x← ~ω) ≈ Φb krb(u) σs(xw) Tr(w) Tr(v)
p(xw, ~v→ ~w)

sin(~v · ~w)
(3.10)

where the scalars (u, v, w) are the signed distances to the point xw on the photon beam, closest
to the query ray, σs is the scattering coefficient, Tr(w) and Tr(v) take into account the transmit-
tance along the query ray and along the photon beam and p denotes the phase function. If the
query ray is disconnected from the photon beam (both v and w are outside their ray segments),
the radiance estimate becomes zero, otherwise the photon beam is blurred using a 1D kernel krb ,
centered on the beam with support width rb along ~u. In our implementation we use a Simpson
kernel in the form of:

k(x) = (1− x2)2 where x ∈ [0, 1] (3.11)

3.4 Progressive Photon Beams

One of the main difficulties with photon mapping methods is to deal with its inherent noise
and bias. Bias is introduced due to the use of a blurring kernel when computing the radiance
estimates and noise results from using too few photons in the photon map. In theory, we can

33

3 Rendering Methods

decrease the blurring radius to an infinitesimally small value, and shoot an infinite number of
photons to obtain unbiased and noise-free results. In practice, this is of course not feasible, as
this would take both an infinite amount of time and storage to compute. Progressive photon
mapping (PPM) [HOJ08] alleviates this problem by progressively updating the radiance esti-
mates at measurement points in the scene, gradually converging to an unbiased solution in the
limit. While most progressive methods focus on surface illumination, Knaus and Zwicker have
also applied the same concept to volumetric photon mapping [KZ11]. But they still used the
inferior point based representation of photons, which was later addressed by Jarosz et al. in the
work on progressive photon beams (PPB) [JNT+11], combining the theory of PPM with the
improved "Beam × Beam 1D" radiance estimate we introduced in the last section.

Progressive Photon Mapping

The main idea of PPM is to progressively render and accumulate a sequence of passes, generat-
ing a final image that converges over time. To analyze the convergence, we can denote the error
of the radiance estimation in pass i at some point in the scene by εi. The average error after
N passes can be denoted by ε̄N = 1

N

∑N
i=1 εi. As we use a new photon map for each pass, we

can treat the errors εi as samples from independent random variables. We can now define the
variance (noise) and expected value (bias) of the average error as:

Var[ε̄N] =
1

N2

N∑
i=1

Var[εi] and E[ε̄N] =
1

N

N∑
i=1

E[εi] (3.12)

In order to achieve convergence in the limit, we need to make sure that for N → ∞, noise and
bias go to zero, i.e. Var[ε̄N]→ 0 and E[ε̄N]→ 0.

It is easy to see that if we apply a constant blurring radius to a sequence of passes, we can
expect the noise to vanish in the limit (due to the N2 term in the denominator), whereas the
bias will stay constant. The goal of PPM methods is to incrementally reduce the blurring radius
such that the overall bias will vanish in the limit. At the same time, we need to make sure that
the increased variance in each pass does not inhibit the overall variance from vanishing, thus
providing convergence in the limit. We will not go into the details of the convergence analysis,
but only provide a brief summary of the results important for our implementation.

Radius Reduction Sequence

Knaus and Zwicker [KZ11] have shown that in order to achieve convergence in PPM, we have
to enforce the following ratio of variances between single passes:

Var[εi+1]

Var[εi]
=
i+ 1

i+ α
(3.13)

where α ∈ [0, 1] is a user specified constant.

34

3.4 Progressive Photon Beams

Jarosz et al. [JNT+11] have shown that the variance Var[εi] from the "Beam × Beam 1D"
estimate is inversely proportional to the beam radius scaling factorRi. Hence we have to enforce
the following ratio between scaling factors in order to achieve convergence:

Ri+1

Ri

=
Var[εi]

Var[εi+1]
=
i+ α

i+ 1
(3.14)

Assuming an initial scaling factor at the first pass of R1 = 1, this ratio induces the following
sequence of scaling factors:

Ri =

(
i−1∏
k=1

k + α

k

)
1

i
(3.15)

In order to provide the user with a single intuitive parameter α to control the convergence, we
need to take into account the number of photon beams per pass M , as by increasing M , the
radius is scaled more slowly with respect to the total number of photon beams after N passes.
A straightforward solution to this is to simply apply M consecutive reductions in each pass,
resulting in the following sequence of scaling factors:

Ri+1

Ri

=
M∑
j=1

(i− 1)M + j + α

(i− 1)M + j + 1
, Ri =

(
Mi−1∏
k=1

k + α

k

)
1

Mi
(3.16)

Rendering

(a) α = 0.5 (b) α = 0.7 (c) α = 0.9

Figure 3.5: Volumetric caustics rendered using PPB with 100 passes of 10k beams each. The different
settings of the convergence parameter α clearly show the trade-off between convergence and
bias.

Rendering an image with PPB is straightforward. Users have control of the following parame-
ters:

• the number of photon beams to use per pass M

35

3 Rendering Methods

• the initial constant radius of the photon beams Rc

• the convergence parameter α

• the medium depth range [mmin,mmax]

For each pass, we first create a new set of photon beams using the photon beam shooter, con-
figured to create photon beams with medium depth mmin ≤ mb ≤ mmax. We set the radius
of each photon beam to RcRi and split them into smaller chunks, so called sub beams, and put
these into a bounding volume hierarchy (BVH) acceleration structure. To evaluate the medium
radiance Lm for a given camera ray, we intersect the ray with the BVH and accumulate the
radiance for each sub beam × camera ray intersection using the "Beam × Beam 1D" estimate
with a blurring radius RcRi.

The user parameter α represents a trade-off between convergence rate and bias as shown in
Figure 3.5. High values of α lead to slow scaling reduction, e.g. faster convergence but more
bias, low values of α lead to faster scaling reduction, e.g. less bias but slower convergence.

To render single scattering, we set the medium depth range to [0, 0], creating only photon beams
before the first scattering event. To render multiple scattering, we set the medium range to
[1,mmax], creating only photon beams after the first scattering event. To combine single and
multiple scattering, we set the medium range to [0,mmax], creating photon beams both before
and after the first scattering event.

Extensions

Figure 3.6: Ray differentials describe spreading (blue) in addition to the origin and direction (red).

For simplicity, our implementation of PPB resigns from using some of the optimizations pro-
posed in the original paper [JNT+11]. There are two techniques worth mentioning, as they
increase the performance of PPB considerably.

First, instead of using a constant radius along the photon beams, we can improve convergence
by using a variable radius along the beams, utilizing a method called ray differentials [Ige99].
In contrast to normal rays, ray differentials not only describe the origin and direction of the ray,
but also describe the spreading (Figure 3.6), allowing photon beams to better fill out the space
and reduce overlapping.

Second, the original paper proposes a splatting technique, where photons beams are rasterized

36

3.5 Virtual Ray Lights

instead of intersected with query rays. This only works for beams directly visible by the camera,
but can improve performance dramatically through leverage of the GPU.

3.5 Virtual Ray Lights

Virtual ray lights (VRL) [NNDJ12] is a so-called many-light algorithm, to simulate indirect
illumination from, and within, participating media. The basic idea is to take a set of photon
beams, and turn them into virtual light sources. These virtual light sources will of course add
an additional bounce of light, therefore many-light algorithms are unable to compute single
scattering effects. Still, we can use VRLs to compute the more difficult multiple scattering
effects on surfaces as well as within the medium.

A comparable approach has been applied to point light sources (VPLs) in various applications:
[Kel97] [WFA+05] [WABG06] [RSK08]. The main difficulty with VPLs is their near-source
behavior, where they basically collapse into a singularity, introducing high peaks in the com-
puted illumination. A common approach to deal with such singularities is to use clamping or
blurring, for example by using virtual spherical lights [HKWB09], which distribute emitted ra-
diance over a sphere instead of emitting all the radiance from a single point. This of course is a
practical approach, but at the same time introduces bias, which we typically try to avoid.

Using VRLs over VPLs has many benefits: By using line segments instead of points, we benefit
from a denser sampling of the medium radiance and at the same time reduce the amount of
singularities, diminishing the need for clamping and blurring. By using an efficient product
importance sampling method, we can efficiently compute the total transported radiance from a
VRL to a camera ray, even when using anisotropic phase functions. Unlike most other many-
light algorithms, VRLs are unbiased and therefor allow for progressive updates trivially by just
summing over multiple passes.

Theory

(a) Li from a VPL (b) Li from a VRL (c) Lm from a VRL

Figure 3.7: Illustration of the radiance transport using VPLs and VRLs.

We start by considering the inscattered radiance Li at position xu into direction ~ωu due to a
single photon (VPL):

37

3 Rendering Methods

Li(xu → ~ωu) = Φp
p(xp, ~ωp → ~ωp,u) p(xu, ~ωp,u → ~ωu) Tr(dp,u) V (xp,xu)

d2
p,u

(3.17)

where Φp, xp and ~ωp are the power, position and direction of the photon, ~ωi,j and di,j are the
direction and distance from xi to xj , p is the phase function and V (xi,xj) is the binary visibility
function between points xi and xj . The geometry is illustrated in Figure 3.7a.

To account for the inscattered radiance due to a photon beam, we can integrate the contribution
of the VPL (3.17) over the length of the beam while accounting for the reduced intensity along
the beam.

Li(xu → ~ωu) = Φb

∫ lb

0

σs(xv) p(xp, ~ωb → ~ωv,u) p(xu, ~ωv,u → ~ωu) Tr(dv,u) Tr(v) V (xv,xu)

d2
v,u

dv

(3.18)

where Φb, xb, ~ωb and lb are the power, origin, direction and length of the photon beam and
xv = xb + v ~ωb is a position on the beam parametrized by v. The additional factors σs(xv) and
Tr(v) take care of the reduced intensity along the beam. The geometry is illustrated in Figure
3.7b.

To compute the reflected radiance Lr at a surface, we can simply replace the phase function at
u with the cosine weighted BRDF fr:

Lr(xu → ~ωu) = Φb

∫ lb

0

σs(xv) p(xp, ~ωb → ~ωv,u) fr(xu, ~ωv,u ↔ ~ωu) Tr(dv,u) Tr(v) V (xv,xu)

d2
v,u

dv

(3.19)

We can also derive a function to compute the accumulated inscattered radiance Lm along a
camera ray with origin xc, direction ~ωc and length s, by integrating (3.18) along the camera
ray, accounting for the additional scattering and transmittance terms, resulting in the following
double-integral:

Lm(xc ← ~ωc) =

Φb

∫ s
0

∫ lb
0

σs(xv) σs(xu) p(xp,~ωb→~ωv,u) p(xu,~ωv,u→−~ωc) Tr(dv,u) Tr(v) Tr(u) V (xv ,xu)

d2v,u
dv du

(3.20)

where xu = xc + u ~ωc is now a position on the camera ray parametrized by u. The additional
factors σs(xu) and Tr(u) take care of the scattering and transmittance on the camera ray. The
geometry is illustrated in Figure 3.7c.

Importance Sampling

To compute radiance from a medium, we have to solve equation (3.20), which defines a 2D
integration domain, where one axis is the length u along a camera ray, and the other axis is the

38

3.5 Virtual Ray Lights

length v along a VRL (or photon beam). Unfortunately, there exists no closed-form solution to
this double-integral, but we can compute it using a Monte Carlo estimator:

Lm(xc ← ~ωc) ≈
1

N

N∑
i=1

g(ui, vi)

pdf(ui, vi)
(3.21)

where g(ui, vi) is the integrand of (3.20) and pdf(ui, vi) is the probability of choosing a point
(ui, vi) in the domain. In order to reduce variance and compute the estimator efficiently, g
should include as many properties of the integrand as possible. Novák et al. propose PDFs for
both isotropic and anisotropic scattering functions, but we will concentrate on the former case,
as this is what we have implemented in PMRender.

Isotropic Scattering

Figure 3.8: Visualization of the VRL product sampling method. The heat map represents the inverse-
squared distance.

In the isotropic case, we target our PDF to be proportional to the inverse-squared distance
term, which makes for the most variation in the integrand. Unfortunately we cannot apply the
inversion method as it yields no analytical solution.

Instead, we can split up the sampling in a two stage process, first distributing a sample vi along
the VRL using a marginal PDF, and then sample a position ui along the camera ray using a
conditional PDF based on the inverse-squared distance to vi.

In order to accomplish this, we first apply a change in variables û = u − uh and v̂ = v − vh,
where uh and vh are the parameters of the two closest points along the camera ray and the VRL,
with distance h between them. We also define û0, û1, v̂0, v̂1 as the transformed start and end
points on the camera ray and the VRL. Using the law of cosines, we can define the squared
distance between two points as d(û, v̂, h, θ)2 = h2 + û2 + v̂2 − 2ûv̂ cos θ with cos θ = ~ωc · ~ωb

39

3 Rendering Methods

being the dot-product of the camera ray and VRL directions. The marginal PDF can now be
expressed as:

pdfv(v̂, v̂0, v̂1) =

∫ û1
û0
d(û, v̂, h, θ)−2 dû∫ v̂1

v̂0

∫ û1
û0
d(û, v̂, h, θ)−2 dû dv̂

(3.22)

As there is no known closed-form solution to this integral, we can simplify it by assuming the
camera ray to be of infinite length, and solve the marginal PDF analytically:

pdfv(v̂, v̂0, v̂1) =

∫∞
−∞ d(û, v̂, h, θ)−2 dû∫ v̂1

v̂0

∫∞
−∞ d(û, v̂, h, θ)−2 dû dv̂

=

π√
h2+v̂2 sin2 θ

πA(v̂1)−A(v̂0)
sin θ

(3.23)

where A(x) = sinh−1
(
x
h

sin θ
)
.

To obtain the marginal CDF, we have to integrate equation (3.23) and get:

cdfv(v̂, v̂0, v̂1) =
A(v̂0)− A(v̂)

A(v̂0)− A(v̂1)
(3.24)

We can now solve for the inverse CDF and get:

cdf−1
v (ξ, v̂0, v̂1) =

h sinh (lerp(A(v̂0), A(v̂1), ξ))

sin θ
(3.25)

Using the inverse CDF, we can now generate a position vi on the VRL by passing in a random
number ξi,1 ∈ [0, 1) . In a second step, we use another random number ξi,2 ∈ [0, 1) and
equiangular sampling [KF12], to generate a position ui on the camera ray. The PDF and inverse
CDF for equiangular sampling are defined as:

pdfu(û, û0, û1) =
h

(B(û1)−B(û0))(h2 + û2)
(3.26)

cdf−1
u (ξ, û0, û1) = h tan (lerp(B(û0), B(û1), ξ)) (3.27)

where B(x) = tan−1
(
x
h

)
.

The final PDF is then simply defined as the product of the PDFs from the two sampling steps.
We have visualized the obtained sampling in Figure 3.8.

Rendering

Rendering with VRLs is straight forward and we can trivially use it in a progressive fashion,
as the method is unbiased and multiple passes can simply be accumulated. For each pass,
we first shoot a set of photon beams to be used as VRLs. To compute the radiance from the

40

3.6 Photon Diffusion

medium Lm, we iterate over all photon beams and evaluate their contribution to the camera
ray using the importance sampling framework described in the previous section. To evaluate
the binary visibility checks V in the integrand of equation (3.20), we use visibility rays and
test them against the scene. As an optimization, visibility rays can be omitted when rendering
participating media enclosed by convex or nearly convex objects, as their contribution become
negligible. As VRLs are only able to compute multiple scattering, we can use PPB to compute
single scattering.

3.6 Photon Diffusion

The classical diffusion theory, as we have introduced in Section 2.6.3, has been applied to
computer graphics in various different ways. To mention a few of these applications: Stam used
finite element methods to compute light transport in multi-layer materials [Sta95]. Jensen et
al. used Monte Carlo sampling to capture direct illumination and applied diffusion theory to
compute subsurface scattering effects [JMLH01]. In later work, Jensen et al. sampled the full
irradiance at a fixed set of points on the surface, which allowed them to partly capture global
illumination effects and improve rendering efficiency considerably by applying hierarchical
evaluation by means of an octree [JB02].

The main contributions of the paper on photon diffusion [DJ07], which we have implemented
in our renderer, was the application of diffusion theory to oblique illumination. While most of
the previous applications solely relied on the dipole configuration, and assumed incident light to
travel into the medium on a beam perpendicular to the surface at the incident location, Donner
et al. have applied diffusion theory to beams that travel in an oblique direction to the surface,
thus allowing for a more accurate response of light traveling in the medium.

Oblique Illumination

To account for oblique illumination, we have to consider the beam source function as defined
in (2.34). We can compute the reflectance profile Rb

d(x,xb, ~ωb) due to a refracted beam with
origin xb, direction ~ωb and unit power after the Fresnel boundary by integrating the reflectance
profileRd(x,xp) due to a source at position xp along the beam, while accounting for the reduced
intensity due to the source function Q(t):

Rb
d(x,xb, ~ωb) =

∫ ∞
0

Q(t)Rd(x,xb + t~ωb)dt with Q(t) = σ′s e
−σ′tt (3.28)

This integral has no closed form solution, so instead of trying to solve it numerically, Donner
et al. proposed to use photon tracing to create a set of photons which is then treated as a set of
sources for the dipole, quadpole or multipole profiles.

41

3 Rendering Methods

Symbol Description

Φp Photon power

tp Sampling distance along the beam

xp Photon position

xpp Photon position projected to the plane at the beam incident point

Sp Plane equation at the beam incident point

dp Depth of photon in relation to the plane at the beam incident point

lp Thickness of the medium approximated by beam length times cosine of refracted angle

Mp Pointer to the medium the photon is suspended in

Table 3.2: Properties associated with a diffusion photon.

Source Distribution

The original paper [DJ07] proposes to use standard Monte Carlo photon tracing for this step,
whereas our implementation uses the photon beam shooter and then samples a set of individual
sources from the set of beams. Some care needs to be taken when tracing the beams though,
as we are only interested in the first scatter locations. This means that we only store the beams
when they enter the medium. If a beam scatters inside the medium, or reflects at an interface, we
do not store it, as internal reflection as well as multiple scattering are handled by the diffusion
approximation. If a beam refracts out of the medium and then re-enters, we treat it the same as
beams entered for the first time. Once a set of beams has been generated for each medium to be
rendered with photon diffusion, we use exponential sampling to generate a list of sources to be
used with photon diffusion. In our implementation we call these sources diffusion photons and
associate a set of values as described in Table 3.2 with each photon. Algorithm 3.6 shows the
details for sampling a photon beam to create a diffusion photon and computing the associated
values.

Single Scattering

In the original paper, the single scattering term is proposed to be computed by means of ray
marching and density estimation of the photon map. We have not explicitly implemented the
single scattering term in our implementation of photon diffusion, as progressive photon beams
already produce much better results than the proposed traditional approach.

Multiple Scattering

To evaluate the reflected radiance Lr at the shading location x in direction ~ω due to multiple
scattering, we can integrate the definition of the BSSRDF (2.25) and use the approximation for

42

3.6 Photon Diffusion

Algorithm 3.6 SAMPLEFROMBEAM(Φb,xb, ~ωb, lb, Sb,Mb, ξ)

1: (d, dpdf)← SAMPLEPROPAGATION

2: if d > lb then
3: return false
4: else
5: Φp ← Φb

σ′sTr(d)
dpdf

6: tp ← d
7: xp ← xb + d~ωb
8: xpp ← PROJECTTOPLANE(xp, Sb)
9: Sp ← Sb

10: dp ← ‖xpp − xp‖
11: lp ← lb(~ωb · −~n) . where ~n is the surface normal at Sb
12: Mp ←Mb

13: return true
14: end if

the diffuse multiple scattering part of the BSSRDF (2.28) due to a reflectance profile Rd of a
single source. To account for all sources, we simply sum over all diffusion photons placed in
the medium:

Lr(x→ ~ω) ≈ 1

π

Ft(x, ~ω, η)

4Cφ(η−1)

∑
p

ΦpRd(x,xp) (3.29)

where p is a diffusion photon and Φp its power. Note that in contrast to (2.28), we have removed
the Fresnel terms accounting for the change of incident light, as this is already been taken care
of by the photon shooting process.

To account for arbitrary geometry, we linearly blend between the reflectance profiles of the
dipole, quadpole and multipole, using the angle γ between the surface normal ~ni at the incident
location of the photon beam and the surface normal ~n at the shading location:

Rd(x,xp) =
2

π

{(
π
2
− γ
)
Rd
d(x,xp) + γRq

d(x,xp), if 0 ≤ γ ≤ π
2

(π − γ)Rq
d(x,xp) +

(
γ − π

2

)
Ru
d(x,xp), if π

2
≤ γ ≤ π

(3.30)

where Rd
d(x,xp), Rq

d(x,xp) and Ru
d(x,xp) are the reflectance profiles of the dipole, the quad-

pole and the multipole due to a source at xp. We illustrate the profile blending in Figure 3.9.

Dipole

For the dipole configuration (see Figure 2.8), we define zr = dp, the depth of the photon in
relation to the surface plane Sp and zv = −zr − 2zb. We compute the distances using dr =√
r2 + z2

r and dv =
√
r2 + z2

v , where r = ‖xpp − x‖ is the distance between the shading
location and the photon position projected to the surface plane Sp.

43

3 Rendering Methods

Figure 3.9: Evaluating the reflectance profile: (1) using only the dipole as the surface normal ~n1 is equal
to ~ni, (2) blending between the dipole and the quadpole, (3) using only the quadpole as
the surface normal ~n3 is perpendicular to ~ni, (4) blending between the quadpole and the
multipole, (5) using only the multipole as the surface normal ~n5 is opposite to ~ni.

Quadpole

For the quadpole configuration (see Figure 2.9a), we define zr and zv equally to the dipole
configuration, xr = ‖xp − xpp‖, where xp is the shading location projected to the surface plane
Sp and xv = −xr − 2zb. The distances are computed as:

dr =
√
x2
r + (zr − s)2

dv =
√
x2
r + (−zv + s)2

drm =
√
x2
v + (−zv + s)2

dvm =
√
x2
v + (zr − s)2

(3.31)

where s is the shortest distance from shading location x to the surface plane Sp.

Multipole

For the multipole configuration (see Figure 2.9b), we define d = dp, the depth of the photon in
relation to the surface plane Sp and l = lp, the approximated thickness of the slab. The definition

of zr,i and zv,i follow directly from (2.43), and we compute the distances as dr,i =
√
r2 + z2

r,i

and dv,i =
√
r2 + z2

v,i where again r = ‖xpp − x‖ is the distance between the shading location
and the photon position projected to the surface plane Sp.

Classical and Improved Diffusion

In the original paper, Donner et al. used the classical diffusion theory to obtain the reflectance
profiles. To counter the fact that classical diffusion theory approximates both single and multiple
scattering, they introduced a correction term κ, which modulates the power of the diffusion

44

3.6 Photon Diffusion

photons based on an estimate of how much of the source’s power contributes to non-single-
scattered light:

κ(d) = 1− e−σtd (3.32)

where d is the distance from the shading location to the photon position. Even with this correc-
tion term applied, we observed that rendered objects tend to be too bright.

We have also implemented photon diffusion based on the improved diffusion theory, where the
single scattering response is explicitly removed from the diffusion approximation. We have
used the empirical correction term proposed by Habel et al. [HCJ13b], which modulates the
power for near-surface sources:

κ(d, t) = 1− e−2σt(d+t) (3.33)

where d is the distance from the shading location to the photon position and t is the distance
from the beam incident location to the photon position. Using the improved diffusion theory
results in much more accurate renderings, as shown in Figure 3.10.

(a) Classical Diffusion (b) Monte Carlo Reference (c) Improved Diffusion

Figure 3.10: Comparison between photon diffusion with classical and improved diffusion theory.

Extensions

For the sake of clarity, we kept our implementation of photon diffusion minimal, omitting some
of the ideas proposed in the original paper. We still want to mention two possible extensions, as
they are relatively simple to implement.

In order to improve the efficiency of the algorithm, one can implement hierarchical evaluation
of the reflectance profiles. The rationale behind this idea is coming from the fact that the con-
tribution from sources falls off exponentially with increased distance to the shading location.
This allows distant sources to be clustered together, acting as a single source, similar to what
we know from solutions to various N-Body problems.

45

3 Rendering Methods

The second extension is support for volumetric shadowing, which occurs if we have opaque
objects embedded in the medium. Shooting photon beams already solves part of the problem
by absorbing beams directly hitting the opaque objects, leaving an area of shadow in the medium
behind the occluder. When adding the contributions of the different sources during shading, we
can trace shadow rays from the shading location to the sources, in order to exclude contributions
from sources that are invisible due to an occluding object, therefore allowing for more accurate
volumetric shadowing.

3.7 Photon Beam Diffusion

Photon beam diffusion [HCJ13b], recently introduced by Habel et al., is a new rendering method
building upon the improved diffusion theory introduced in Section 2.6.4 and a Monte Carlo
integration framework to compute subsurface scattering effects. The method is well suited for
both traditional subsurface scattering rendering, where irradiance samples in a point cloud are
convolved with a reflectance profile to compute reflected radiance, as well as photon beam based
rendering, where the contribution of oblique photon beams is directly computed using Monte
Carlo integration. In addition to more accurately rendering the multiple scattering response,
Habel et al. also introduce a novel approach for rendering exact diffuse single scattering.

Method

The core idea behind the photon beam diffusion method is the numerical integration of the inte-
gral describing the reflectance profile due to a beam with unit power after the Fresnel boundary,
as previously stated in (3.28):

Rb
d(x,xb, ~ωb) =

∫ ∞
0

Q(t)Rd(x,xb + t~ωb)dt with Q(t) = σ′s e
−σ′tt (3.34)

where xb is the beam origin, ~ωb is the beam direction andRd(x,xp) is the reflectance profile due
to a source at position xp. We can numerically solve this integral using Monte Carlo integration
with importance sampling:

Rb
d(x,xb, ~ωb) ≈

N∑
i=1

f(x,xb, ~ωb, ti)

pdf(ti | x,xb, ~ωb)
(3.35)

where f(x,xb, ~ωb, ti) = Q(ti)Rd(x,xb + ti~ωb) is the integrand in (3.34) and pdf(ti | x,xb, ~ωb)
is the PDF of choosing ti, given the shading location x, beam origin xb and beam direction ~ωb.

To evaluate (3.35), we can use an arbitrary sampling strategy, but preferably choose one that
matches the behavior of the integrand f , in order to minimize variance.

46

3.7 Photon Beam Diffusion

(a) Exponential Sampling (b) Equiangular Sampling

Exponential Sampling

The traditional way to sample propagation distances inside a homogeneous medium is exponentially-
decreasing sampling with the PDF proportional to the source term of Q(t), as shown in Figure
3.11a:

ti = − log(1− ξi)
σ′t

with pdfexp(ti) = σ′t e
−σ′tti (3.36)

where ξi ∈ [0, 1) is uniformly distributed. The PDF is only dependent on ti and is completely
agnostic of the sampling location x, as well as the beam defined by xb and ~ωb. Using photon
beam diffusion with exponential sampling is basically the equivalent to the photon diffusion
method introduced in Section 3.6.

Equiangular Sampling

Another strategy is to place samples in the angular domain subtended by the refracted beam in
respect to the sampling location x as shown in Figure 3.11b . This corresponds to equiangular
sampling as proposed by Kulla and Fajardo [KF12] and is defined by:

ti = h tan θi with pdfea(ti) =
h

(θb − θa) (h2 + t2i)
(3.37)

where h is the nearest distance between the shading location x and the refracted beam, θa and
θb are the start and end angles of the integration in the angular domain, and θi = lerp(θa, θb, ξ),
the linear interpolation between θa and θb.

Deterministic Sampling

While standard Monte Carlo methods usually use random or pseudo random sequences for
ξi, Habel et al. propose to use a deterministic regular sequence defined by ξi = i−0.5

N
, in

order to avoid per-pixel noise from the profile evaluation. This basically turns the Monte Carlo

47

3 Rendering Methods

integration into a custom numerical quadrature and produces accurate results even with a low
number of samples (3-5).

Multiple Importance Sampling

When comparing the results for profile evaluation using exponential and equiangular sampling,
we can find that exponential sampling performs well in the tail of the profile, while underes-
timating the peak of the profile. In contrast, equiangular sampling performs well in the peak,
while underestimating the tail of the profile. Habel et al. propose a multiple importance sam-
pling [VG95] (MIS) strategy, to combine the strengths and weaknesses of both sampling strate-
gies. In our own implementation, we solely rely on equiangular sampling for simplicity, as it
provides better results in the more important peak region of the profile.

We have found that deterministic equiangular sampling alone introduces bias, which is trivially
solved by replacing the regular sequences with ξi = i−ξp

N
, where ξp is a uniform random number

set once per pass.

Multiple Scattering

To evaluate the reflected radiance Lr at the shading location x in direction ~ω due to multiple
scattering, we can adapt (3.29) and sum over all photon beams instead of the diffusion photons:

Lr(x→ ~ω) ≈ 1

π

Ft(x, ~ω, η)

4Cφ(η−1)

∑
b

ΦbR
b
d(x,xb, ~ωb) (3.38)

where b is a photon beam, Φb the power and Rb
d the reflectance profile. To compute the re-

flectance profile of a single beam, we use the Monte Carlo estimator (3.35) with discrete equian-
gular sampling. Note that to evaluate Rd in the Monte Carlo estimator, we use the same profile
blending as described in Section 3.6.

Diffuse Single Scattering

In addition to improved rendering of multiple scattering, Habel et al. also introduced a novel
approach to render diffuse single scattering based on the following Green’s function:

R(1)(x,xb, ~ωb, t) =
p(~ωb → ~ωxtx) Tr(dxtx) Ft(θ, η

−1) cos θ

d2
xtx

(3.39)

where xt = xb + t~ωb is a point along the beam (source), dxtx is the distance and ~ωxtx is the
direction from the source at xt to the shading location x and θ = arccos(~ωxtx ·~n) is the incident
angle of the light emitted from the source in respect to the shading location on the inside of the
surface. Thus, the Fresnel term FT accounts for the amount of light exiting the medium through
the surface.

48

3.7 Photon Beam Diffusion

To compute the single scattering reflectance profile due to a single beamR(1),b, we integrateR(1)

along the beam and use the same Monte Carlo estimator as used for multiple scattering (3.35),
with a redefined integrand f(x,xb, ~ωb, ti) = Q(ti) R

(1)(x,xb, ~ωb, ti). Finally, to compute the
reflected radiance, we sum over all photon beams:

Lr(x→ ~ω) ≈ 1

π

∑
b

ΦbR
(1),b(x,xb, ~ωb) (3.40)

Note that we do not need the normalization constant as in the multiple scattering case.

Extensions

Our implementation of photon beam diffusion directly uses the photon beams to compute the
reflectance at surface points from oblique illumination. As an alternative, the method can also
be applied in a more traditional setting, where we convolve a set of irradiance samples with
the reflectance profiles. This of course prevents oblique illumination, but due to the symmetry
in the reflectance profiles, allows for various optimizations. Habel et al. have proposed a
number of techniques, such as caching and smoothing of the reflectance profiles, to enhance
both performance and visual fidelity. Unfortunately, due to non-symmetric reflectance profiles,
these techniques are difficult to apply in the oblique illumination setting. This is the main reason
for omitting the proposed techniques in our implementation of PBD.

49

3 Rendering Methods

50

4
Implementation

Over the course of this thesis, we have implemented the renderer PMRender, used as a testbed
for implementation, testing and comparison of the different photon beam based rendering meth-
ods presented in Chapter 3. This chapter gives a brief summary on the usage and implementation
of PMRender.

4.1 Overview

The software is written in portable C++, allowing it to be compiled on various different com-
pilers and run on different systems. We have successfully compiled and run PMRender on the
following compiler and operating system combinations:

• OSX with LLVM-GCC (32-bit and 64-bit)

• Ubuntu Linux with GCC (32-bit)

• Windows 7 with Visual C++ 2010 (32-bit)

Supporting additional configurations should be relatively easy due to the use of the CMake build
system [HMK+00], which allows for automatic generation of project files for various integrated
development environments (IDEs) such as XCode, Eclipse or Visual Studio as well as standard
Unix Makefiles. In addition to CMake, we also use the following third party libraries:

• OpenGL/GLUT for the main application window and fast preview of the scene geometry

• OpenEXR [Mag00] for reading/writing EXR image files

• LodePNG [Van05] for reading/writing PNG image files

51

4 Implementation

• tinythread [Gee10] for cross-platform threading support

• fmath [Mit09] for a faster exponential function exp

• rapidjson [Yip11] for reading JSON files

4.2 User Interface

Figure 4.1: PMRender running on Mac OSX with enabled HUD.

The application provides a very simplistic GUI (Figure 4.1), showing the scene as it is progres-
sively rendered. In addition, the GUI allows for the following user interactions:

• Display OpenGL preview of the scene (wireframe overlay)

• Display HUD with additional information (number of passes, total render time, etc.)

• Camera navigation (rotate & zoom)

• Exposure and gamma correction of the displayed image

• Saving images

To control the GUI, the following mouse and keyboard commands are available.

52

4.3 Software Architecture

LMB + Drag Rotate camera

RMB + Drag Zoom camera

h Toggle help screen

H Toggle HUD

p Toggle OpenGL preview

e/E Decrease/Increase exposure correction

g/G Decrease/Increase gamma correction

s Save current image

ESC Quit

4.3 Software Architecture

Figure 4.2: Overview of the software architecture used in PMRender.

The software architecture for PMRender consists of three layers: the foundation layer, the scene
description layer and the rendering layer. These are implemented in the PMCore library, which
is linked against the PMRender application, implementing the GUI and the glue code to com-
municate with the renderer.

We have thoroughly commented the source code in order to automatically generate software
documentation using Doxygen [vH97]. The following sections provide a high-level description
of the implementation. For details, please consult the source code documentation.

4.3.1 Foundation Layer

The foundation layer consists of an extensive set of classes, providing the basic building blocks
for the rest of the application. It also acts as an abstraction layer, allowing the rest of the
application to be independent of the underlying operating system. The foundation layer consists,
among others, of the following namespaces and classes:

• Math and linear algebra (Math:: namespace)

53

4 Implementation

• Random number generation and quasi random sequences (Rand:: namespace)

• OpenGL abstraction layer (OGL:: namespace)

• Image handling (Image, ImageReader, ImageWriter)

• High resolution timer (Timer)

• Threading abstraction layer (ThreadPool, Task)

4.3.2 Scene Description Layer

The scene description layer consists of a set of classes to describe the virtual scene to be ren-
dered. In addition, many of the classes provide additional methods, used by the rendering layer,
to compute various quantities or generate sample data, e.g. the Shape classes provide ray in-
tersection methods and the BSDF classes provide methods to evaluate as well as sample the
BSDFs.

Scene

The Scene class is used to manage all objects describing a virtual scene, including shapes,
BSDFs, textures, media, lights and a camera. Scenes are currently defined in source code, each
scene inheriting from the Scene class, implementing the build() function to create all the
assets of the scene.

Shape

Shape

InfinitePlane Sphere Triangle

Figure 4.3: Shape class hierarchy

The Shape classes (Figure 4.3) describe the basic geometric primitives to build a scene. We
currently provide only three kinds of shapes, Triangle being the most versatile, as it can be
used for rendering arbitrary triangular meshes. Each shape has a BSDF assigned to it, describing
the appearance of the shape when rendered. For improved ray intersection performance, shapes
can be put into a bounding volume hierarchy (BVH).

BSDF

The BSDF classes (Figure 4.4) provide a set of bidirectional scattering distribution functions
used to describe scattering at surfaces. LambertBSDF provides a diffuse reflection model,
PhongBSDF provides a glossy specular reflection model and FresnelBSDF provides a smooth
dielectric model providing both reflection and transmission. Each BSDF has an outside and an

54

4.3 Software Architecture

BSDF

FresnelBSDF LambertBSDF PhongBSDF

Figure 4.4: BSDF class hierarchy

optional inside medium assigned to it, the outside medium being in direction of the surface nor-
mal. This allows transmissive BSDFs to automatically compute the relative index of refraction
and explicitly defines the the two media joining at the interface.

Texture

Texture

BitmapTexture CheckerTexture ConstantColorTexture

Figure 4.5: Texture class hierarchy

The Texture classes (Figure 4.5) are used to define spatially varying parameters for the BS-
DFs, as well as for an optional environment map.

HomogeneousMedium

As we currently only support homogeneous media, we have not implemented a class hierarchy
representing media. We only provide the HomogeneousMedium class, used to describe the
properties of a homogeneous participating medium.

Light

As we currently only support one type of light source, namely spot lights, we have directly
implemented them in the concrete class Light.

Camera

The Camera class is used to describe the virtual camera in the scene.

4.3.3 Rendering Layer

The rendering layer provides a set of base classes for rendering images as well as the imple-
mentation of the various rendering methods described in Chapter 3. We tried to keep the design
lightweight, yet versatile enough for experimentation, such that new rendering methods can be
implemented easily by writing small components and joining them with the rest of the system.

55

4 Implementation

PhotonBeam

The PhotonBeam class describes a photon beam and consists of the same properties as de-
scribed in Table 3.1. For efficient ray intersections, e.g. for the progressive photon beam algo-
rithm, photon beams can be split into sub beams, using the SubBeamAccelObject wrapper
class, and put into a BVH acceleration structure.

PhotonBeamShooter

The PhotonBeamShooter class implements the photon beam shooting process described in
Section 3.3. It essentially creates a list of PhotonBeam objects to be used with the various
rendering methods.

DiffusionProfile

DiffusionProfile

DiffusionProfileFloat DiffusionProfileSSE

ClassicalDiffusionFloat ImprovedDiffusionFloat ClassicalDiffusionSSE ImprovedDiffusionSSE

Figure 4.6: DiffusionProfile class hierarchy

The abstract base class DiffusionProfile defines an interface for computing reflectance
profiles using diffusion theory. The DiffusionProfileFloat and DiffusionProfileSSE
base classes implement the profile blending as described in Section 3.6 and define abstract meth-
ods to compute the directional derivative of a monopole and an optional correction term. We
have implemented floating point and SSE optimized versions. The ClassicalDiffusionXXX
and ImprovedDiffusionXXX classes implement the monopole and correction terms for
classical and improved diffusion theory. This abstraction allows the rendering code to easily
switch between the two diffusion models and floating point or SSE optimized versions.

Integrator

Integrator

SubsurfaceIntegrator SurfaceIntegrator VolumeIntegrator

Figure 4.7: Integrator class hierarchy

Integrators are used to compute radiance for different types of queries. The abstract base class
Integrator (Figure 4.7) defines the interface for common tasks such as preprocessing, and
lets the descendants define the methods for the actual queries.

56

4.3 Software Architecture

SurfaceIntegrator

Descendants of the abstract base class SurfaceIntegrator are responsible for comput-
ing the incident radiance at any point from any direction, e.g. at surfaces or at the cam-
era origin. Surface integrators should only compute scattering at surfaces and rely on the
volume and subsurface integrators provided by the renderer, to compute contributions from
participating media. We currently only provide a minimalistic path tracer, implemented in
PTSurfaceIntegrator.

VolumeIntegrator

VolumeIntegrator

Integrator

ASSVolumeIntegrator PhotonBeamVolumeIntegrator

HybridVolumeIntegrator PPBVolumeIntegrator VRLVolumeIntegrator

Figure 4.8: Volume integrator class hierarchy

Descendants of the abstract base class VolumeIntegrator (Figure 4.8) are responsible for
computing the accumulated inscattered radiance from a medium along a given ray segment. We
have implemented the following volume integrators:

• ASSVolumeIntegrator, computing analytic single scattering using Monte Carlo in-
tegration

• PPBVolumeIntegrator, implementing progressive photon beams (PPB) as described
in Section 3.4

• VRLVolumeIntegrator, implementing virtual ray lights (VRL) as described in Sec-
tion 3.5

• HybridVolumeIntegrator, using PPB to compute single scattering, VRL to com-
pute multiple scattering

SubsurfaceIntegrator

Descendants of the abstract base class SubsurfaceIntegrator (Figure 4.9) are respon-
sible for computing exitant radiance at a given surface location. We have implemented the
following subsurface integrators:

• PDSubsurfaceIntegrator, implementing photon diffusion (PD) as described in
Section 3.6

• PBDSubsurfaceIntegrator, implementing photon beam diffusion (PBD) as de-
scribed in Section 3.7

57

4 Implementation

SubsurfaceIntegrator

Integrator

PBDSubsurfaceIntegrator PDSubsurfaceIntegrator

Figure 4.9: Subsurface integrator class hierarchy

ProgressiveRenderer

The ProgressiveRenderer class implements the core of the renderer. It is responsible for
progressively rendering passes, which are continuously accumulated to a final image. To allow
for rendering with different methods, the renderer is configured with a surface and optional
volume or subsurface integrators. To render a pass, the renderer first calls the preprocessing
methods of the integrators, then spawns a set of tasks, each rendering an interleaved set of
scanlines. For each pixel, we generate a ray and query the surface integrator to compute the
incident radiance.

58

5
Results

5.1 Multiple Scattering

In this section, we compare the multiple scattering solutions of the four rendering methods PPB,
VRL, PD and PBD, as VRL and PD do not provide single scattering. To compare the rendering
methods, we created a simple test scene (GLASSCOMPARISON) containing a drinking glass
filled with a liquid. We chose two materials, the first being beer, which is highly absorbing and
has very little scattering (low albedo), the second being milk, which is highly scattering (high
albedo). The material parameters are taken from a list of physical measurements by Narasimhan
et al. [NGD+06] and are scaled to match the dimensions of the virtual scene. As both materials
are strongly forward scattering, but the PD and PBD rendering methods only handle isotropic
media, we used the principle of similarity [PH10, Chapter 16.5.3] to derive reduced scattering
and extinction coefficients, which were used across all rendering methods, in order to allow for
better comparison. In addition, we have lowered the concentration of milk by a factor of 10,

Material Absorption coefficient (σa) Scattering coefficient (σs)

(× 10−2 mm−1) (× 10−2 mm−1)

R G B R G B

Beer (yuengling) 0.8248 2.2215 5.4367 0.0114 0.0120 0.0137

Milk (regular) 0.0154 0.0460 0.1994 51.885 58.090 63.754

Table 5.1: Scattering and absorption coefficients used for materials in comparison renderings.

59

5 Results

as the material in full concentration was too dense for our test renderings, absorbing almost
all light shortly after it enters the medium. Table 5.1 shows the scaled and reduced material
parameters as used in our test scene. From the two base materials we derived a series of mixed
materials by blending the scattering and absorption coefficients [NGD+06]. This allows us to
compare the rendering methods at various albedos.

Render Settings

In order to reduce the effects of convergence from the path tracer (anti aliasing, reflections
etc.), we balanced the render times per pass across all methods. To achieve this, we adjusted
the number of photon beams used per pass in each method, specifically we used 2000 photon
beams for PPB, 100 for VRL and 400 for PD and PBD. We used the following render settings
for the different methods:

PPB: We set the beam radius to rb = 0.03 and the convergence parameter to α = 0.8. We use a
maximum photon beam media depth of 250 bounces, which is required especially for the high
albedo cases.

VRL: We use one sample per product evaluation and disable visibility rays, as they have negli-
gible effects on the appearance due to the medium being enclosed in a mostly convex volume.
We use a maximum of 249 medium bounces, as VRLs perform one additional implicit bounce.

PD: We use the classical diffusion model as proposed in the original paper [DJ07]. A com-
parison between PD with the improved diffusion model and PBD will yield almost identical
results, as they only differ in their sampling strategies. We disabled the contributions from the
multipole, as they are computationally the most expensive for evaluation and contribute only a
negligible amount of radiance in our test scene.

PBD: We use 1 sample per photon beam for the profile evaluation and also disabled the contri-
butions from the multipole.

All images are rendered at a resolution of 256 × 512 pixels on an Intel Core i7-2600 CPU @
3.40 GHz with 16GB RAM, utilizing all 8 cores (4 physical, 4 virtual) in parallel.

Presentation

We present our results in the comparison images starting with Figure 5.2. Each image series
shows the final rendered images using PPB, VRL, PD and PBD side by side, all rendered with
equal material parameters and total render time. In addition, we visualize the convergence of
each method by showing the intermediate results of the same sub area at 5, 10 and 15 minutes.
We denote the mix ratio by m, where m = 0.0 is beer and m = 1.0 is milk. Furthermore, we
denote the average albedo by α and the total render time T .

60

5.1 Multiple Scattering

Low Albedo

We start our comparison with the low albedo cases (α = 0.01 and α = 0.23), shown in Figure
5.2 and Figure 5.3, all rendered at a total render time of T = 15 min. The appearance of
the liquid is primarily affected by absorption in the medium (transmittance term), such that
the contribution from the rendering methods is hardly noticeable. PPB performs the worst in
this situation, as most of the rendering time is spent in the photon beam shooter, trying to
create photon beams after the first scattering event, which occurs with very low probability
only (less than 0.04 % of the emitted beams in the first series). In the second series (Figure
5.3), we start to see a dim gray shimmer in the PD rendering due to the inaccuracies in the
classical diffusion model. Despite all methods converging very fast, we could increase rendering
performance considerably by ignoring the scattering terms altogether. This will generally lead
to good approximations for materials with very low albedos.

Medium Albedo

Next, we compare the methods for medium albedos (α = 0.53 and α = 0.77), shown in Figure
5.4 and Figure 5.5. We increase the total render time to T = 20 min. The liquid starts to show a
milky appearance due to more light being scattered within the medium. The inaccuracies of the
classical diffusion model used in PD become more visible. The same applies for PBD, which
shows some inaccuracies compared to PPB and VRL, primarily in the rim where the liquid
meets with glass and air. At this point, especially in the second series (Figure 5.5), we notice
the improved convergence rate for the diffusion based methods in return of sacrificed accuracy.
While both diffusion methods have converged at T = 5 min, PPB and VRL show variance
before converging at about T = 20 min. The variance in the VRL rendering is more visually
pleasing, as it exhibits less high frequency noise than PPB.

High Albedo

In the last three series, we compare the methods for the high albedo cases (α = 0.91, α = 0.96
and α = 0.9987), shown in Figure 5.6, Figure 5.7 and Figure 5.8. We increase the total render
time to T = 30, T = 35 and T = 40 min. At this point, PPB and VRL do not fully converge
and show increasing variance with higher albedos, even despite the extended render time. At
albedos of 0.9 and higher, PPB and VRL start to become infeasible to produce quality results
in a reasonable render time. In contrast, the diffusion methods still converge quite fast, but
also take increasingly longer to converge with higher albedos. We also note increasing visual
differences between the solutions of PPB and VRL compared to the diffusion methods, most
obvious at the boundary between liquid and air, which shows higher intensity in the PPB and
VRL solutions. This difference presumably follows from the inaccuracies in the diffusion model
as well as the empirical correction terms to attenuate near-surface sources.

Comparing the diffusion methods, we observe that PD converges slightly faster than PBD,
which can be explained as follows: When rendering with PD, we create a single set of dif-
fusion photons once per pass, as exponential sampling is invariant to the shading location. On
the other hand, when rendering with PBD, we need to create the sources on the fly due to using

61

5 Results

equiangular sampling, which depends on the current shading location. Computing the source in-
tensities involves an exponential (transmittance term), which is expensive to evaluate and needs
to be computed many times more for PBD than for PD.

(a) PPB (200K beams) (b) VRL (200K beams) (c) PPB (1M beams) (d) VRL (1M beams)

Figure 5.1: Comparison of variance between PPB and VRL using an equal number of photon beams.
Note that the render times are vastly different (5 minutes for PPB against 90 minutes for
VRL @ 1M photon beams).

We observe similar convergence between PPB and VRL, with the main difference being the
type of variance (higher frequency for PPB, lower frequency for VRL), contradicting the results
from the original VRL paper [NNDJ12]. To render the FRUITJUICE scene, which is the most
comparable to our test scene, Novak et al. used a CPU implementation of PPB and compared
it against a VRL implementation utilizing the GPU to compute the VRL connections. Our
implementation of VRL is purely CPU based and is computationally much more expensive than
our PPB implementation. A single pass using 2K photon beams takes around 0.35 seconds for
PPB and 7.0 seconds for VRL. To demonstrate the superiority of the VRL method, we compare
the variance between PPB and VRL using the same number of photon beams (Figure 5.1).

62

5.1 Multiple Scattering

Figure 5.2: Comparison for m = 0.0 (beer only), α = 0.01, T = 15 min.

Figure 5.3: Comparison for m = 0.01, α = 0.23, T = 15 min.

63

5 Results

Figure 5.4: Comparison for m = 0.04, α = 0.53, T = 20 min.

Figure 5.5: Comparison for m = 0.12, α = 0.77, T = 20 min.

64

5.1 Multiple Scattering

Figure 5.6: Comparison for m = 0.3, α = 0.91, T = 30 min.

Figure 5.7: Comparison for m = 0.5, α = 0.96, T = 35 min.

65

5 Results

Figure 5.8: Comparison for m = 1.0 (milk only), α = 0.9987, T = 40 min.

66

5.2 Single Scattering

5.2 Single Scattering

(a) PPB (b) PBD (original) (c) PBD (modified)

Figure 5.9: Comparison between single scattering from PPB and two variants of PBD.

In addition to multiple scattering, we also compare the single scattering from PPB and PBD.
We have found that the original diffuse single scattering term (3.39) proposed by Habel et al.
[HCJ13b] is incomplete in the presented form, the main culprit being that the reflected radiance
is independent of the viewing direction. Also, in the original form, the single scattering response
assumes a rough dielectric model (diffuse), but does not derive this in a concise way. Therefore
we modified the diffuse single scattering term to be more in line with the multiple scattering
term used in PBD, leading to the following equations, replacing (3.39) and (3.40):

R(1)(x,xb, ~ωb, t) =
p(~ωb → ~ωxtx) Tr(dxtx) cos θ

d2
xtx

(5.1)

Lr(x→ ~ω) ≈ 1

π
Ft(x, ~ω, η)

∑
b

ΦbR
(1)(x,xb, ~ωb) (5.2)

We removed the Fresnel term in (3.39), accounting for the amount of light escaping the medium,
and added a Fresnel reshaping term in (3.40), which accounts for the amount of diffuse light
seen from the viewing direction, analogously to multiple scattering.

We have rendered the FRUITJUICE scene showing two liquids (isotropic media) with single
scattering at a resolution of 512 × 512 pixels for 2 hours each, on the same machine that was
used for the multiple scattering comparison. The results are shown in Figure 5.9. We first note
differences in the sharpness and intensity of the single scattering solutions between PPB and the
two variants of PBD, which is expected due to the PBD methods computing a diffuse response
whereas PPB does not. The main difference between the original and the modified PBD method
is in the intensity, most visible at the top surface of the liquid. This comes from the high relative
index of refraction between liquid and air, leading to reduced contribution from the photon
beams due to a narrow critical angle (total internal reflection). In the modified version, the
photon beams contribute to the diffuse light along their full length.

In addition, we also note singularities in the PBD solutions due to the inverse squared distance
term in the Green’s function. To mitigate these singularities, we could clamp the distances, but

67

5 Results

Method Total Profile Profile Speedup Total Speedup

std::exp (scalar) 945 ms 910 ms 0.0 % 0.0 %

fmath::exp (scalar) 845 ms 810 ms 12.3 % 11.8 %

fmath::exp (SSE) 540 ms 505 ms 80.2 % 75.0 %

Table 5.2: Improved performance gained from fmath and SSE optimized versions, with std::exp
being the baseline. We show the total time per pass, time for profile evaluation per pass,
speedup in profile evaluation and total speedup.

this inevitably leads to lost energy. As an alternative, we discussed replacing the point sources
with spherical sources, allowing for better distribution of the energy in the near surface region.
Initial tests of this approach have shown promise and further investigation seems worthwhile,
especially in combination with a proper derivation of the diffuse single scattering term (3.39).

5.3 Optimized Profile Evaluation

To remain clarity in our implementation of the rendering methods, we have generally left out
most of the optimization techniques proposed in the original papers, with one exception worth
mentioning. During development of the diffusion methods, we suffered from slow performance
in the profile evaluation, which made the development process very cumbersome. The main
culprit was the slow execution of the exponential function. Due to the fact that most computa-
tions in the profile evaluation are performed on all three components of the spectrum (color),
a vectorized implementation using SSE intrinsics seemed worthwhile, as we can then perform
4 single precision floating point operations simultaneously. Both our floating point and SSE
optimized versions use the optimized exponential function provided by fmath [Mit09]. We have
measured the performance enhancements in a modified FRUITJUICE scene (one glass only, no
floor), rendering with PD (dipole and quadpole only) at a resolution of 256 × 256 pixels on a
MacBook Pro running an Intel Core i7 @ 2.6 GHz. We obtain a total speedup of 75.0 % from
the SSE optimized version compared to the baseline using std::exp and scalar floating point
code. We summarize the measurements in Table 5.2.

68

6
Conclusion and Future Work

In this thesis, we studied different state of the art rendering methods to compute images with
participating media. We summarized the mathematical background, provided an introduction
to traditional rendering methods for participating media as well as a comprehensive overview
of recent rendering methods based on the photon beam approach. Starting from an existing
code base, we developed a cross-platform renderer implementing the presented methods in a
clean and cohesive way. We compared the rendering methods side by side in various settings,
based on images computed by our new renderer, and discussed their advantages and disadvan-
tages. We hope that our renderer will be useful for future research, either as a starting point
for experimentation with existing rendering methods, or as a framework for implementing new
methods.

There is of course much room for improvements and future work, regarding both our renderer
as well as the rendering methods in general. Our renderer provides clean reference imple-
mentations of the presented methods, which was the primary goal for this thesis, but it can be
improved in various areas. This includes both improvements of the APIs exposed to the render-
ing methods, as well as extensions to the basic feature set of the renderer, allowing the methods
to be tested in more diverse situations. The following are a few possible ideas:

• Support for heterogeneous media

• Generic sampling of media and phase functions

• Improved sampling strategies (quasi-random sequences)

• Additional BSDFs for surface shading

• Additional types of light sources (area lights, image based lighting)

Concerning the rendering methods, we mostly discussed possible improvements for the photon

69

6 Conclusion and Future Work

beam diffusion method, which primarily suffers from singularities in our current implementa-
tion. The techniques proposed by Habel et al. [HCJ13b] to mitigate these singularities only
address the case of non-oblique illumination and are hard to adapt for oblique illumination. A
promising approach for future work is the extension of the point sources to spherical sources
in both single and multiple scattering, which would naturally diminish the singularities without
additional smoothing of the reflectance profiles. Our renderer provides a good framework for
experimentation with such ideas.

70

Bibliography

[Aro95] Raphael Aronson. Boundary conditions for diffusion of light. Journal of the Opti-
cal Society of America A, 12(11):2532–2539, 1995.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[Cha60] Subrahmanyan Chandrasekhar. Radiative Transfer. Dover, 1960.

[d’E12] Eugene d’Eon. A better dipole. Technical report, http://www.eugenedeon.com,
2012.

[DI11] Eugene D’Eon and Geoffrey Irving. A quantized-diffusion model for render-
ing translucent materials. ACM Transactions on Graphics (Proc. SIGGRAPH),
30(4):56:1–56:14, 2011.

[DJ07] Craig Donner and Henrik Wann Jensen. Rendering translucent materials using
photon diffusion. Rendering Techniques (Proc. Eurographics Symposium on Ren-
dering), pages 243–252, 2007.

[FPW92] Thomas J. Farrell, Micheal S. Patterson, and Brian Wilson. A diffusion theory
model of spatially resolved, steady-state diffuse reflectance for the noninvasive
determination of tissue optical properties in vivo. Medical Physics, 19(4):879–
888, 1992.

[Gee10] Marcus Geelnard. tinythread, 2010. http://tinythreadpp.bitsnbites.eu.

[Gro56] C. C. Grosjean. A high accuracy approximation for solving multiple scattering
problems in infinite homogeneous media. Il Nuovo Cimento (1955-1965), 3:1262–
1275, 1956.

Bibliography

[Gro58] C. C. Grosjean. Multiple isotropic scattering in convex homogeneous media
bounded by vacuum. In Proc. Second International Conference on the Peaceful
Uses of Atomic Energy, volume 413, 1958.

[HCJ13a] Ralf Habel, Per H. Christensen, and Wojciech Jarosz. Classical and improved dif-
fusion theory for subsurface scattering. Technical report, Disney Research Zürich,
2013.

[HCJ13b] Ralf Habel, Per H. Christensen, and Wojciech Jarosz. Photon beam diffusion: A
hybrid monte carlo method for subsurface scattering. Computer Graphics Forum
(Proc. Eurographics Symposium on Rendering), 32(4), 2013.

[HG41] L. G. Henyey and J. L. Greenstein. Diffuse radiation in the Galaxy. Astrophysical
Journal, 93:70–83, 1941.

[HKWB09] Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. Virtual spherical
lights for many-light rendering of glossy scenes. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia), 28(5), 2009.

[HMK+00] Bill Hoffman, Ken Martin, Brad King, Dave Cole, and Alexander Neundorf.
CMake, 2000. http://www.cmake.org.

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon
mapping. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 27(5), 2008.

[Ige99] Homan Igehy. Tracing ray differentials. In SIGGRAPH, SIGGRAPH ’99. ACM,
1999.

[JB02] Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering technique for
translucent materials. Computer Graphics (Proc. SIGGRAPH), 21(3):576–581,
2002.

[JC95] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bidirectional
monte carlo ray tracing of complex objects. Computers & Graphics, 19(2):215–
224, 1995.

[JC98] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light transport
in scences with participating media using photon maps. Computer Graphics (Proc.
SIGGRAPH), pages 311–320, 1998.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. Rendering Tech-
niques (Proc. Eurographics Workshop on Rendering), pages 21–30, 1996.

[Jen01] Henrik Wann Jensen. Realistic image synthesis using photon mapping. A. K.
Peters, Ltd., Natick, MA, USA, 2001.

[JMLH01] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A
practical model for subsurface light transport. Computer Graphics (Proc. SIG-
GRAPH), 35:511–518, 2001.

[JNSJ11] Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen.
A comprehensive theory of volumetric radiance estimation using photon points and
beams. ACM Transactions on Graphics, 30(1):5:1–5:19, 2011.

72

Bibliography

[JNT+11] Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and
Matthias Zwicker. Progressive photon beams. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia), 30(6):181:1–181:12, 2011.

[JZJ08] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. The beam radiance
estimate for volumetric photon mapping. Computer Graphics Forum (Proc. Euro-
graphics), 27(2):557–566, 2008.

[Kaj86] James T. Kajiya. The rendering equation. Computer Graphics (Proc. SIGGRAPH),
20:143–150, 1986.

[Kel97] Alexander Keller. Instant radiosity. Computer Graphics (Proc. SIGGRAPH), pages
49–56, 1997.

[KF12] Christopher Kulla and Marcos Fajardo. Importance sampling techniques for path
tracing in participating media. Computer Graphics Forum (Proc. Eurographics
Symposium on Rendering), 31(4):1519–1528, 2012.

[KP97] Alwin Kienle and Michael S. Patterson. Improved solutions of the steady-state and
the time-resolved diffusion equations for reflectance from a semi-infinite turbid
medium. Journal of the Optical Society of America A, 14(1):246–254, 1997.

[KZ11] Claude Knaus and Matthias Zwicker. Progressive photon mapping: A probabilistic
approach. ACM Transactions on Graphics, 30(3):25:1–25:13, 2011.

[Mag00] Industrial Light & Magic. OpenEXR, 2000. http://www.openexr.com.

[Mit09] Shigeo Mitsunari. fmath, 2009. http://homepage1.nifty.com/herumi/soft/fmath.html.

[NGD+06] Srinivasa G. Narasimhan, Mohit Gupta, Craig Donner, Ravi Ramamoorthi,
Shree K. Nayar, and Henrik Wann Jensen. Acquiring scattering properties of par-
ticipating media by dilution. ACM Transactions on Graphics (Proc. SIGGRAPH),
pages 1003–1012, 2006.

[NNDJ12] Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz.
Virtual ray lights for rendering scenes with participating media. ACM Transactions
on Graphics (Proc. SIGGRAPH), 31(4):60:1–60:11, 2012.

[NRH+77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.
Geometric Considerations and Nomenclature for Reflectance. National Bureau of
Standards, 1977.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition:
From Theory To Implementation. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2nd edition, 2010.

[RSK08] Matthias Raab, Daniel Seibert, and Alexander Keller. Unbiased global illumination
with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006,
pages 591–606. Springer, 2008.

[SP94] Francois X. Sillion and Claude Puech. Radiosity and Global Illumination. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

[Sta95] Jos Stam. Multiple scattering as a diffusion process. Rendering Techniques (Proc.

73

Bibliography

Eurographics Workshop on Rendering), pages 41–50, 1995.

[Van05] Lode Vandevenne. LodePNG, 2005. http://lodev.org/lodepng.

[VG95] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for
monte carlo rendering. Computer Graphics (Proc. SIGGRAPH), (29):419–428,
1995.

[vH97] Dimitri van Heesch. Doxygen, 1997. http://www.stack.nl/ dimitri/doxygen.

[WABG06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. Multidimen-
sional lightcuts. ACM Transactions on Graphics (Proc. SIGGRAPH), 25(3), 2006.

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian,
and Donald P. Greenberg. Lightcuts: a scalable approach to illumination. ACM
Transactions on Graphics (Proc. SIGGRAPH), 24(3), 2005.

[Yip11] Milo Yip. rapidjson, 2011. https://code.google.com/p/rapidjson.

74

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	2 Theory
	2.1 Radiometry
	2.2 Rendering Equation
	2.3 Participating Media
	2.4 Radiative Transport Equation
	2.5 Volume Rendering Equation
	2.6 Subsurface Scattering
	2.6.1 BSSRDF
	2.6.2 Searchlight Problem
	2.6.3 Classical Diffusion Theory
	2.6.4 Improved Diffusion Theory

	3 Rendering Methods
	3.1 Volumetric Path Tracing
	3.2 Photon Mapping
	3.3 Photon Beams
	3.4 Progressive Photon Beams
	3.5 Virtual Ray Lights
	3.6 Photon Diffusion
	3.7 Photon Beam Diffusion

	4 Implementation
	4.1 Overview
	4.2 User Interface
	4.3 Software Architecture
	4.3.1 Foundation Layer
	4.3.2 Scene Description Layer
	4.3.3 Rendering Layer

	5 Results
	5.1 Multiple Scattering
	5.2 Single Scattering
	5.3 Optimized Profile Evaluation

	6 Conclusion and Future Work
	Bibliography

